CAREER: A Multidisciplinary Framework for Innovative Design of Wind Turbines
职业生涯:风力涡轮机创新设计的多学科框架
基本信息
- 批准号:1150332
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Kivanc EkiciInstitution: University of Tennessee-KnoxvilleTitle: CAREER: A Multidisciplinary Framework for Innovative Design of Wind Turbines With renewed emphasis on energy independence, there is an increased need to improve the reliability, efficiency and performance of current and future power generation technologies. It is clear that the wind turbine technology will play a vital role in ensuring the nation's energy independence. However, structural failure of wind turbine blades leading to high maintenance costs and intermittent operation is common, and accurate prediction of unsteady aerodynamic forces acting on wind turbine blades remains elusive. It is critical to focus attention on the development of novel high fidelity analysis and design techniques that are 10 to 100 times faster than what is currently available. This project will integrate research and education to investigate and devise novel methods for wind turbine design technology with greatly decreased computational cost, while educating next generation of wind energy engineers. The project will improve complex multi-physics understanding by establishing an elegant approach for innovative wind turbine designs. The education component of the plan will focus on training students who translate the proposed research into real-world applications.Intellectual MeritThis project will investigate unsteady aerodynamic modeling and rapid design of wind turbines by developing and applying two very efficient computational methods - a "multi-frequency" harmonic balance method and an adjoint method - which will be used in an optimization algorithm to design innovative wind turbines with improved aerodynamic, aeroelastic, and aeroacoustic characteristics. Furthermore, sensitivity information will be used to quantify uncertainty in unsteady flow predictions. Design optimization methods developed for wind turbines are directly applicable to turbomachinery used in aircraft engines and land-based power generators. Current designs may be improved for increased fuel efficiency, better aeromechanic characteristics, and increased safety. Broader ImpactsThe educational and outreach plan includes development of a wind engineering course and a wind turbine aerodynamics and aeroelasticity course. Other activities include training of next-generation researchers, involving undergraduate students in cutting-edge research, and participating in summer outreach programs that target high school teachers and K-12 students. Outreach efforts will be augmented by collaborations with an established Professor of Teacher and Science Education and the College of Engineering's Office of Academic and Student Affairs. Finally, an executable version of computational tools developed in this project will be made available to interested parties for research use.
主要研究者:Kivanc EkiciInstitution:田纳西大学诺克斯维尔分校标题:职业生涯:风力涡轮机创新设计的多学科框架随着对能源独立的重新重视,越来越需要提高当前和未来发电技术的可靠性,效率和性能。显然,风力涡轮机技术将在确保国家能源独立方面发挥至关重要的作用。然而,风力涡轮机叶片的结构故障导致高维护成本和间歇性操作是常见的,并且作用在风力涡轮机叶片上的非定常气动力的准确预测仍然是难以捉摸的。关键是要把注意力集中在开发新的高保真分析和设计技术上,这些技术比目前可用的技术快10到100倍。本项目将结合研究和教育,研究和开发新的方法,风力涡轮机设计技术,大大降低计算成本,同时培养下一代风能工程师。该项目将通过为创新的风力涡轮机设计建立一种优雅的方法来提高对复杂的多物理场的理解。该计划的教育部分将侧重于培养学生将拟议的研究转化为现实世界的应用。智力优点该项目将通过开发和应用两种非常有效的计算方法-“多频”谐波平衡法和伴随法-来研究风力涡轮机的非定常空气动力学建模和快速设计。其将用于优化算法中以设计具有改进的空气动力学、气动弹性和气动声学特性的创新风力涡轮机。此外,敏感性信息将用于量化非定常流预测中的不确定性。 为风力涡轮机开发的设计优化方法直接适用于飞机发动机和陆基发电机中使用的涡轮机。当前的设计可以被改进以增加燃料效率、更好的空气动力学特性和增加的安全性。更广泛的影响教育和推广计划包括开发一个风力工程课程和一个风力涡轮机空气动力学和气动弹性课程。 其他活动包括培训下一代研究人员,让本科生参与前沿研究,并参加针对高中教师和K-12学生的夏季外展计划。外联工作将通过与教师和科学教育教授以及工程学院学术和学生事务办公室的合作得到加强。最后,本项目开发的计算工具的可执行版本将提供给感兴趣的各方用于研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced-order model-based convergence acceleration of reverse mode discrete adjoint solvers
- DOI:10.1016/j.ast.2019.105334
- 发表时间:2019-10
- 期刊:
- 影响因子:5.6
- 作者:Andrew L. Kaminsky;K. Ekici
- 通讯作者:Andrew L. Kaminsky;K. Ekici
Aeroelastic Modeling of the AGARD 445.6 Wing Using the Harmonic-Balance-Based One-Shot Method
使用基于谐波平衡的单次方法对 AGARD 445.6 机翼进行气动弹性建模
- DOI:10.2514/1.j058363
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Li, Hang;Ekici, Kivanc
- 通讯作者:Ekici, Kivanc
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kivanc Ekici其他文献
Novel evaporator architecture with entrance-length crossflow-paths for supercritical Organic Rankine Cycles
- DOI:
10.1016/j.ijheatmasstransfer.2017.11.042 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Adrian S. Sabau;Ali H. Nejad;James W. Klett;Adrian Bejan;Kivanc Ekici - 通讯作者:
Kivanc Ekici
Thermal-hydraulics modeling for prototype testing of the W7-X high heat flux scraper element
- DOI:
10.1016/j.fusengdes.2017.07.014 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Emily Clark;Arnold Lumsdaine;Jean Boscary;Henri Greuner;Kivanc Ekici - 通讯作者:
Kivanc Ekici
Deflection predictions of involute-shaped fuel plates using a fully-coupled numerical approach
- DOI:
10.1016/j.anucene.2019.02.001 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Franklin G. Curtis;James D. Freels;Kivanc Ekici - 通讯作者:
Kivanc Ekici
Kivanc Ekici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kivanc Ekici', 18)}}的其他基金
A New Paradigm for Computing Discrete Adjoint Sensitivities Based on Operator-Overloading and Its Application to Aerodynamic Design
基于算子重载的离散伴随灵敏度计算新范式及其在气动设计中的应用
- 批准号:
1803760 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
- 批准号:
RGPIN-2020-05422 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T01248X/2 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
- 批准号:
RGPIN-2020-05422 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T012536/1 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T012463/1 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T012633/1 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T012641/1 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
- 批准号:
NE/T01248X/1 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grant
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
- 批准号:
RGPIN-2020-05422 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
- 批准号:
DGECR-2020-00290 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




