A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications

将领域知识集成到多学科工业应用的机器学习算法中的统一框架

基本信息

  • 批准号:
    RGPIN-2020-05422
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Though supervised learning methods demonstrate superior performance in predictive analytics, to date, they learn only from labeled data. The role of human beings in the process has been restricted to "mere labeler," and the knowledge of experts is not being fully utilized. This research envisages the development of a general framework to represent and integrate experts' opinions into learning systems, and, if possible, to transfer their invaluable knowledge for decision-making processes in real-life applications. Over the next five years, we plan to work on developing a novel unifying framework for utilizing human advice in an efficient manner to facilitate machine learning (ML) algorithms and we intend to develop novel solutions to human-guided learning for industrial applications. The long-term goals of the proposed research include deep investigation and development of novel, automated, efficient real-time ML algorithms capable of providing solutions to industrial problems by exploiting domain knowledge in both supervised and unsupervised methods. Innovation: Novel approaches for incorporating experts' knowledge into ML algorithms in noisy, structured domains will be developed to accelerate learning effective models in which, so far, humans have been merely used as labelers. We plan to develop a natural framework which will allow experts to encode their knowledge, both as general advice about the domain and as specific advice about particular examples. The proposed framework will offer generality by capturing different types of advice through preferential, cost function-based, qualitative constraints, as well as privileged information. Practical Applications: In practice, this research has the potential to significantly impact: (i)industrial applications in fields such as medical imaging and forensics, which can benefit from image segmentation and registration techniques and in which human advice can be exploited by using deep learning in an effective manner; (ii)the welding industry, by accelerating welding sequence optimization and reducing structural deformations; (iii)the manufacturing industry, by automating operations such as peg-hole insertion tasks; and (iv)the robotics industry, by providing solutions to robot inverse kinematics problems for higher degrees of freedom. Highly Qualified Personnel Training: The proposed research program intends to train students and produce data scientists with unique expertise in ML and artificial intelligence (AI), which will enable them to be world-class experts in the fields of ML, AI, and computer vision.
尽管监督学习方法在预测分析中表现出上级性能,但迄今为止,它们仅从标记数据中学习。人类在这一过程中的作用仅限于“仅仅贴标签”,专家的知识没有得到充分利用。这项研究设想开发一个总体框架,以代表和整合专家的意见到学习系统,并在可能的情况下,转移他们的宝贵知识,在现实生活中的应用决策过程。在接下来的五年里,我们计划开发一个新的统一框架,以有效的方式利用人类的建议来促进机器学习(ML)算法,我们打算为工业应用开发新的人工指导学习解决方案。拟议研究的长期目标包括深入研究和开发新型、自动化、高效的实时ML算法,这些算法能够通过在监督和非监督方法中利用领域知识来提供工业问题的解决方案。 创新:将开发将专家知识纳入嘈杂、结构化领域的ML算法的新方法,以加速学习有效模型,到目前为止,人类仅被用作标记者。我们计划开发一个自然的框架,允许专家将他们的知识编码为关于该领域的一般建议和关于特定示例的具体建议。拟议的框架将提供一般性的捕获不同类型的建议,通过优惠,成本函数为基础,定性约束,以及特权信息。实际应用:在实践中,这项研究有可能对以下领域产生重大影响:(i)医学成像和法医学等领域的工业应用,这些领域可以受益于图像分割和配准技术,并且可以通过有效的方式使用深度学习来利用人类的建议;(ii)焊接行业,通过加速焊接序列优化和减少结构变形;(iii)制造业,通过自动化操作,例如钉孔插入任务;以及(iv)机器人工业,通过提供更高自由度的机器人逆运动学问题的解决方案。高素质人才培训:拟议的研究计划旨在培养学生并培养具有ML和人工智能(AI)独特专业知识的数据科学家,使他们成为ML,AI和计算机视觉领域的世界级专家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saha, BaidyaNath其他文献

Saha, BaidyaNath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saha, BaidyaNath', 18)}}的其他基金

A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
  • 批准号:
    RGPIN-2020-05422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
  • 批准号:
    RGPIN-2020-05422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
A unifying framework for integrating domain knowledge into machine learning algorithms for multidisciplinary industrial applications
将领域知识集成到多学科工业应用的机器学习算法中的统一框架
  • 批准号:
    DGECR-2020-00290
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
  • 批准号:
    10665493
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
  • 批准号:
    10573542
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
  • 批准号:
    10754773
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
NIDA Clinical Trials Network: New York Node - GY22 Integrating MOUD in Non-Medical Settings to Improve Treatment and Retention of Black/AA Persons
NIDA 临床试验网络:纽约节点 - GY22 在非医疗环境中整合 MOUD,以改善黑人/AA 人的治疗和保留
  • 批准号:
    10809985
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Clinical Trials Network: Admin Supplement: Integrating MOUD with BUP in Non-medical Community Settings
临床试验网络:管理补充:在非医疗社区环境中将 MOUD 与 BUP 集成
  • 批准号:
    10801347
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
  • 批准号:
    10637960
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
  • 批准号:
    10641060
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
  • 批准号:
    10349828
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Integrating the Visualization and Use of Stigma Data to Maximize the Impact of the Ending the HIV Epidemic Initiative
整合污名数据的可视化和使用,最大限度地发挥结束艾滋病毒流行倡议的影响
  • 批准号:
    10459729
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了