A New Paradigm for Computing Discrete Adjoint Sensitivities Based on Operator-Overloading and Its Application to Aerodynamic Design

基于算子重载的离散伴随灵敏度计算新范式及其在气动设计中的应用

基本信息

  • 批准号:
    1803760
  • 负责人:
  • 金额:
    $ 30.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The design and development of future wind turbines, aircraft, and turbomachinery requires extensive use of computational fluid dynamic (CFD) analyses to model and understand complex fluid phenomena. However, these analyses alone do not provide insight into how current and future designs can be optimized. Complementary to CFD analyses is another computational method called adjoint computation. High-fidelity adjoint computations provide exciting potential for aerodynamic optimization, but widespread use of such methods is hindered due to the significant time required for hand-coding adjoint solvers and the substantially cumbersome debugging process needed to adopt existing automated approaches. Therefore, the principal aim of this project is to develop fully automated adjoint sensitivity analysis techniques that are not only computationally and memory efficient but also able to be readily integrated into existing CFD solvers. Successfully completing this project will significantly advance the state-of-the-art in aerodynamic design optimization and enable the next generation of aerospace innovation. This project will incorporate several outreach and educational activities, including a new project-based graduate course, a training program for faculty and engineering professionals interested in this technology, and hands-on workshops to pre-service science teachers to facilitate the use of related activities in the classroom.The overall goal of this project is to introduce a new approach for adjoint sensitivity analysis. This new paradigm will employ operator overloading (OO), a capability offered by object-oriented programming, to automatically compute the sensitivity of any objective function to all design variables (potentially thousands). Unlike the traditional use of OO in adjoint computations, which requires the storage of any intermediate variable in the iterative process, thereby exponentially increasing the memory needed, this method will take advantage of the repetitiveness of the iterative process to minimize the memory footprint. More specifically, the efforts will focus on (i) developing a novel and efficient CFD-based approach to calculate steady, time-periodic, time-accurate adjoint sensitivities; (ii) coupling this novel technique to a reduced-order-model-based acceleration technique to further speed up adjoint computations; (iii) applying the new technique to relevant problems including optimizing wind turbine shape and designing new natural-laminar flow airfoils. These activities will directly contribute to the fundamental understanding of how complex flow features affect design and performance of future aircraft engines, as well as aircraft wings and wind turbine blades.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来风力涡轮机、飞机和涡轮机的设计和开发需要广泛使用计算流体动力学(CFD)分析来建模和理解复杂的流体现象。然而,这些分析本身并不能提供如何优化当前和未来设计的见解。作为CFD分析的补充,另一种计算方法称为伴随计算。高保真伴随计算为气动优化提供了令人兴奋的潜力,但由于手工编码伴随求解器所需的大量时间以及采用现有自动化方法所需的相当繁琐的调试过程,这种方法的广泛使用受到阻碍。 因此,该项目的主要目的是开发全自动伴随灵敏度分析技术,不仅计算和内存效率,而且能够很容易地集成到现有的CFD求解器。该项目的成功完成将大大推进最先进的空气动力学设计优化,并实现下一代航空航天创新。该项目将包括几个推广和教育活动,包括一个新的基于项目的研究生课程,对该技术感兴趣的教师和工程专业人员的培训计划,以及为职前科学教师举办的实践研讨会,以促进在课堂上使用相关活动。这种新的范例将采用操作符重载(OO),一种由面向对象编程提供的能力,自动计算任何目标函数对所有设计变量(可能是数千个)的灵敏度。与传统的在伴随计算中使用OO不同,它需要在迭代过程中存储任何中间变量,从而以指数方式增加所需的内存,这种方法将利用迭代过程的重复性来最小化内存占用。更具体地说,工作将集中在(i)开发一种新的和有效的基于CFD的方法来计算稳定的,时间周期的,时间精确的伴随灵敏度;(ii)耦合这种新技术的降阶模型为基础的加速技术,以进一步加快伴随计算;(iii)应用新技术的相关问题,包括优化风力涡轮机形状和设计新的自然层流翼型。这些活动将直接有助于从根本上了解复杂的流动特性如何影响未来飞机发动机以及机翼和风力涡轮机叶片的设计和性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aerodynamic Shape Optimization Framework Based on a Novel Fully-Automated Adjoint Differentiation Toolbox
基于新型全自动伴随微分工具箱的气动形状优化框架
  • DOI:
    10.2514/6.2019-3201
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Djeddi, Reza;Ekici, Kivanc
  • 通讯作者:
    Ekici, Kivanc
Adjoint-Based Uncertainty Quantification and Calibration of RANS-Based Transition Modeling
基于 RANS 的转变模型的伴随不确定性量化和校准
  • DOI:
    10.2514/6.2021-3036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Djeddi, Reza;Floyd, Coleman D.;Coder, James G.;Ekici, Kivanc
  • 通讯作者:
    Ekici, Kivanc
Memory Efficient Adjoint Sensitivity Analysis for Aerodynamic Shape Optimization
用于气动形状优化的内存高效伴随灵敏度分析
  • DOI:
    10.2514/6.2020-0885
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Djeddi, Reza;Ekici, Kivanc
  • 通讯作者:
    Ekici, Kivanc
Efficient One-Shot Technique for Adjoint-Based Unsteady Optimization
基于伴随的非定常优化的高效一次性技术
  • DOI:
    10.2514/1.j060142
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Djeddi, Reza;Ekici, Kivanc
  • 通讯作者:
    Ekici, Kivanc
Novel Expression-Template-Based Automatic Differentiation of Fortran Codes for Aerodynamic Optimization
基于新颖表达模板的 Fortran 代码自动微分用于空气动力学优化
  • DOI:
    10.2514/1.j059505
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Djeddi, Reza;Ekici, Kivanc
  • 通讯作者:
    Ekici, Kivanc
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kivanc Ekici其他文献

Novel evaporator architecture with entrance-length crossflow-paths for supercritical Organic Rankine Cycles
  • DOI:
    10.1016/j.ijheatmasstransfer.2017.11.042
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian S. Sabau;Ali H. Nejad;James W. Klett;Adrian Bejan;Kivanc Ekici
  • 通讯作者:
    Kivanc Ekici
Thermal-hydraulics modeling for prototype testing of the W7-X high heat flux scraper element
  • DOI:
    10.1016/j.fusengdes.2017.07.014
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Clark;Arnold Lumsdaine;Jean Boscary;Henri Greuner;Kivanc Ekici
  • 通讯作者:
    Kivanc Ekici
Deflection predictions of involute-shaped fuel plates using a fully-coupled numerical approach
  • DOI:
    10.1016/j.anucene.2019.02.001
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Franklin G. Curtis;James D. Freels;Kivanc Ekici
  • 通讯作者:
    Kivanc Ekici

Kivanc Ekici的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kivanc Ekici', 18)}}的其他基金

CAREER: A Multidisciplinary Framework for Innovative Design of Wind Turbines
职业生涯:风力涡轮机创新设计的多学科框架
  • 批准号:
    1150332
  • 财政年份:
    2012
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant

相似国自然基金

范型(Paradigm)统一化问题
  • 批准号:
    68783007
  • 批准年份:
    1987
  • 资助金额:
    3.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Enabling Transient Computing for Unreliable Internet of Things: A Paradigm Shift for Sensor Systems (PROCEEDING)
为不可靠的物联网启用瞬态计算:传感器系统的范式转变(进行中)
  • 批准号:
    EP/W022877/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Research Grant
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
  • 批准号:
    RGPIN-2019-06120
  • 财政年份:
    2022
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2022
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
  • 批准号:
    RGPIN-2019-06120
  • 财政年份:
    2021
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2021
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: A Non-local Mathematical and Computational Paradigm for Failure in Unsaturated Soils: Integrated Research and Education through High Performance Computing
职业:非饱和土失效的非局部数学和计算范式:通过高性能计算进行综合研究和教育
  • 批准号:
    1944009
  • 财政年份:
    2020
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
  • 批准号:
    RGPIN-2019-06120
  • 财政年份:
    2020
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
  • 批准号:
    DGECR-2019-00124
  • 财政年份:
    2019
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Launch Supplement
Cloud-to-Edge Computing: A Unified Computational Paradigm
云到边缘计算:统一计算范式
  • 批准号:
    RGPIN-2019-06120
  • 财政年份:
    2019
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
CPS: Breakthrough: Charge-Recycling based Computing Paradigm for Wirelessly Powered Internet-of-Things
CPS:突破:基于电荷回收的无线供电物联网计算范式
  • 批准号:
    1646318
  • 财政年份:
    2016
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了