PECASE: Advancing Treatment of Pelvic Floor Disorders through Discoveries in Elasticity and Viscoelasticity of Uterosacral and Cardinal Ligaments

PECASE:通过子宫骶韧带和主韧带的弹性和粘弹性的发现推进盆底疾病的治疗

基本信息

项目摘要

1150397De VitaPelvic floor disorders (PFDs) such as urinary incontinence, fecal incontinence, and pelvic organ prolapse represent a major public health concern in the United States affecting one third of adult women. These disorders are determined by structural and mechanical alterations of the pelvic organs, their supporting muscles and connective tissues that occur mainly during pregnancy, vaginal delivery, and aging. The national cost burden imposed by PFDs is alarming in terms of direct health care costs, lost productivity, and decreased quality of life. It is projected to increase dramatically by 2050 with the increase in the aging population in the United States. New research forecasts that the number of adult women affected by PFDs will increase from to 28.1 million in 2010 to 43.8 million in 2050. The alarming cost burden and projected high incidence of PFDs emphasize the critical need for research in engineering and science that leads to the development of new treatment strategies. This CAREER project aims at determining the elastic and viscoelastic properties of two major ligaments supporting the uterus and vagina: the uterosacral ligaments (USLs) and cardinal ligaments (CLs). Rigorous mechanical experiments will be performed on USLs and CLs to completely characterize their important role as supportive structures of the uterus and vagina. Mechanical testing will be then coupled with synchrotron X-ray diffraction imaging in order to reveal the collagenous micro-structure of USLs and CLs with unprecedented details. The results of the experiments will be used to develop reliable structurally-based constitutive models for USLs and CLs and assess their predictive capabilities. These models will be derived within a nonlinear integral representation theory, which encompasses the quasi-linear viscoelasticity and the modified superposition principle, and has the potential to successfully capture expected nonlinearities in the mechanical response of the USLs and CLs.Intellectual Merit. This project will potentially transform surgical reconstruction methods and post-operative rehabilitation protocols for female PFDs by offering new knowledge about the structural and mechanical properties of USLs and CLs. Currently, the USLs and CLs are either adjusted in ad-hoc manner or replaced using synthetic tapes for enhancing the suspension of the uterus and vagina. This innovative research will be crucial in establishing science-based guidelines and specific protocols for the treatment of PFDs ultimately providing better care for millions of adult women afflicted by these disorders. The PI has a unique blend of analytical skills and experimental prowess that makes her especially qualified to conduct the proposed research. The Biophysics Collaborative Access Team at the Argonne National Laboratory will provide the PI with the necessary expertise and training to use the synchrotron X-ray facilities. Through the collaboration with the Department of Obstetrics and Gynecology at the Walter Reed Army Medical Center, the PI will keep herself abreast of the challenges in female pelvic medicine and reconstructive surgery and contribute firsthand to the care and management of PFDs.Broader Impact. In this project, research and education are seamlessly integrated to enhance the students' curriculum and increase the participation of underrepresented groups in science and engineering. The education program creates new partnerships between Virginia Tech and the community in the region, increasing the leadership role of the PI's home institution in the state's societal and educational initiatives. Undergraduate and graduate students will participate in the proposed research and education components of the project. A new graduate course on nonlinear mechanics of biological systems will be developed and an undergraduate course will be significantly revised to include laboratory hours in experimental biomechanics. Interactive mini-lectures complemented with hands-on activities in biomechanics, prepared in formats understandable by non-scientists, are proposed to enrich the science curriculum at the Blacksburg Middle School and engage the visitors of the Science Museum of Western Virginia. Summer camps and mentorship will be offered to high school students with disabilities in order to facilitate their transition to college. Lunch and group meetings for women faculty in engineering will be organized to create a supportive environment and mentoring relationships. The findings of these research and education efforts will be disseminated on the web, published in peer-reviewed journals, and presented at national and international conferences.
1150397 De VitaPelvic floor disorders(PFDs),如尿失禁、大便失禁和盆腔器官脱垂,是美国主要的公共卫生问题,影响三分之一的成年女性。这些疾病是由盆腔器官的结构和机械变化决定的,它们的支持肌肉和结缔组织主要发生在怀孕,阴道分娩和衰老期间。PFDs造成的国家成本负担在直接医疗保健成本、生产力损失和生活质量下降方面令人担忧。预计到2050年,随着美国人口老龄化的增加,这一数字将急剧增加。新的研究预测,受PFDs影响的成年女性人数将从2010年的2810万增加到2050年的4380万。令人担忧的成本负担和预计的高发病率的PFDs强调迫切需要在工程和科学的研究,导致新的治疗策略的发展。 本CAREER项目旨在确定支撑子宫和阴道的两个主要韧带的弹性和粘弹性:子宫骶骨韧带(USL)和主韧带(CL)。将对USL和CL进行严格的力学实验,以完全表征其作为子宫和阴道支撑结构的重要作用。然后将机械测试与同步加速器X射线衍射成像相结合,以前所未有的细节揭示USL和CL的胶原微结构。实验结果将用于开发可靠的基于结构的USL和CL本构模型,并评估其预测能力。这些模型将推导出一个非线性积分表示理论,其中包括准线性粘弹性和修改的叠加原理,并有可能成功地捕捉预期的非线性力学响应的USL和CL。智力优点。该项目将通过提供关于USL和CL的结构和力学特性的新知识,潜在地改变女性PFD的手术重建方法和术后康复方案。目前,USL和CL要么以特定方式调整,要么使用合成胶带替代,以增强子宫和阴道的悬挂。这项创新的研究将在建立以科学为基础的指导方针和治疗PFDs的具体方案方面至关重要,最终为数百万患有这些疾病的成年女性提供更好的护理。PI具有独特的分析技能和实验能力,使她特别有资格进行拟议的研究。阿贡国家实验室的生物物理协作访问团队将为PI提供使用同步加速器X射线设施所需的专业知识和培训。通过与沃尔特里德陆军医疗中心妇产科的合作,PI将及时了解女性盆腔医学和重建手术的挑战,并为PFDs的护理和管理做出第一手贡献。更广泛的影响。在这个项目中,研究和教育无缝集成,以提高学生的课程,并增加在科学和工程的代表性不足的群体的参与。该教育计划在弗吉尼亚理工大学和该地区的社区之间建立了新的伙伴关系,提高了PI的家庭机构在该州社会和教育活动中的领导作用。本科生和研究生将参加该项目的拟议研究和教育部分。将编制一门关于生物系统非线性力学的新的研究生课程,并将对本科生课程进行重大修订,以包括实验生物力学的实验时间。互动式迷你讲座辅以动手活动,在生物力学,非科学家可以理解的格式编写,建议丰富科学课程在布莱克斯堡中学和从事西弗吉尼亚州的科学博物馆的游客。将向残疾高中生提供夏令营和辅导,以促进他们向大学过渡。将为工程专业的女教师组织午餐和小组会议,以创造一个支持性的环境和指导关系。这些研究和教育工作的结果将在网上传播,在同行评审的期刊上发表,并在国家和国际会议上提出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raffaella De Vita其他文献

Special Issue on the Advances in Engineering for Women’s Health
  • DOI:
    10.1007/s10439-021-02837-5
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Raffaella De Vita;Jennifer Munson
  • 通讯作者:
    Jennifer Munson
Testing on novel neutron detectors as alternative to <sup>3</sup>He for security applications
  • DOI:
    10.1016/j.nima.2012.07.025
  • 发表时间:
    2012-12-22
  • 期刊:
  • 影响因子:
  • 作者:
    Paolo Peerani;Alice Tomanin;Sara Pozzi;Jennifer Dolan;Eric Miller;Marek Flaska;Marco Battaglieri;Raffaella De Vita;Luisa Ficini;Giacomo Ottonello;Giovanni Ricco;Geraint Dermody;Calvin Giles
  • 通讯作者:
    Calvin Giles
Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy
  • DOI:
    10.1016/j.engfracmech.2023.109732
  • 发表时间:
    2024-01-23
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher M. Jackson;Jeffrey A. McGuire;Martin E. Losada;Ian Maskery;Ian Ashcroft;Raffaella De Vita;David A. Dillard
  • 通讯作者:
    David A. Dillard
Nonlinear Deformations of Bilayer Lipid Membranes
  • DOI:
    10.1016/j.bpj.2008.12.3209
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raffaella De Vita;Iain W. Stewart
  • 通讯作者:
    Iain W. Stewart
Biomechanical and Compositional Changes in the Murine Uterus with Age
  • DOI:
    10.1007/s10439-025-03709-y
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Mari J. E. Domingo;Triniti N. Vanoven;Raffaella De Vita;Maria E. Florian Rodriguez;Kristin S. Miller;Isaac J. Pence
  • 通讯作者:
    Isaac J. Pence

Raffaella De Vita的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raffaella De Vita', 18)}}的其他基金

Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
BRITE Pivot: Tissue Research Advances for New Surgeries-Facilitating Organ Reconstruction with Mechanics
BRITE 支点:新手术的组织研究进展——利用力学促进器官重建
  • 批准号:
    2135683
  • 财政年份:
    2022
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
LEAP-HI: Coordinated Advances in Reproductive Engineering for Health Research (CARE4HeR)
LEAP-HI:健康研究生殖工程的协调进展 (CARE4HeR)
  • 批准号:
    2053851
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
Mechanics-based Metrics for Vaginal Tear Evaluation
基于力学的阴道撕裂评估指标
  • 批准号:
    1929731
  • 财政年份:
    2019
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
Active Mechanical Properties of the Uterosacral Ligament: A New Micro-to-Macro Characterization for Prolapse Treatment
子宫骶骨韧带的主动机械特性:脱垂治疗的新的微观到宏观表征
  • 批准号:
    1804432
  • 财政年份:
    2018
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Impact of Pregnancy on the Mechanics of Vaginal Tissue
UNS:合作研究:怀孕对阴道组织力学的影响
  • 批准号:
    1511603
  • 财政年份:
    2015
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant
Micro-Mechanical Characterization of Damage in Ligaments
韧带损伤的微观机械特征
  • 批准号:
    0932024
  • 财政年份:
    2009
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Standard Grant

相似海外基金

Advancing BITT-101 a novel dominant CD40 antagonist for use in treatment of Sjogren Syndrome.
推进 BITT-101 成为一种新型 CD40 拮抗剂,用于治疗干燥综合征。
  • 批准号:
    10760568
  • 财政年份:
    2023
  • 资助金额:
    $ 47.33万
  • 项目类别:
Advancing Couple and Family Alcohol Treatment through Patient-Oriented Research and Mentorship
通过以患者为导向的研究和指导推进夫妻和家庭酒精治疗
  • 批准号:
    10644311
  • 财政年份:
    2023
  • 资助金额:
    $ 47.33万
  • 项目类别:
The Amyloidosis Forum: Advancing Drug Development in ATTR Amyloidosis in an Evolving Treatment Landscape.
淀粉样变性论坛:在不断发展的治疗格局中推进 ATTR 淀粉样变性的药物开发。
  • 批准号:
    10683562
  • 财政年份:
    2023
  • 资助金额:
    $ 47.33万
  • 项目类别:
Creating an sxRNA Organoid Product for Advancing the Study, Prevention and Treatment of Alzheimer's disease (AD) and Alzheimer's-disease-related dementias (ADRD)
创建 sxRNA 类器官产品以推进阿尔茨海默病 (AD) 和阿尔茨海默病相关痴呆 (ADRD) 的研究、预防和治疗
  • 批准号:
    10765970
  • 财政年份:
    2023
  • 资助金额:
    $ 47.33万
  • 项目类别:
Advancing Anaerobic Membrane Bioreactor Treatment for Value Addition to Starch Based High Particulate Wastes
推进厌氧膜生物反应器处理,为淀粉基高颗粒废物增值
  • 批准号:
    RGPIN-2017-04011
  • 财政年份:
    2022
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing novel treatment strategies for MYC-amplified medulloblastoma, one of the most fatal brain tumours of childhood
推进针对 MYC 扩增的髓母细胞瘤的新治疗策略,这是儿童期最致命的脑肿瘤之一
  • 批准号:
    2601994
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Studentship
Surfactant Protein C Mouse Models: A Fit For Purpose Preclinical Platform For Advancing Discovery In And Treatment Of Idiopathic Pulmonary Fibrosis
表面活性剂蛋白 C 小鼠模型:一个适合目的的临床前平台,可促进特发性肺纤维化的发现和治疗
  • 批准号:
    10321882
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
Advancing Personalised Care: Treatment Selection and Outcome Prediction Research"
推进个性化护理:治疗选择和结果预测研究”
  • 批准号:
    2605893
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
    Studentship
Advancing treatment and understanding of immunotherapy in glioblastoma
促进胶质母细胞瘤免疫疗法的治疗和理解
  • 批准号:
    10305129
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
Surfactant Protein C Mouse Models: A Fit For Purpose Preclinical Platform For Advancing Discovery In And Treatment Of Idiopathic Pulmonary Fibrosis
表面活性剂蛋白 C 小鼠模型:一个适合目的的临床前平台,可促进特发性肺纤维化的发现和治疗
  • 批准号:
    10542732
  • 财政年份:
    2021
  • 资助金额:
    $ 47.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了