Active Mechanical Properties of the Uterosacral Ligament: A New Micro-to-Macro Characterization for Prolapse Treatment

子宫骶骨韧带的主动机械特性:脱垂治疗的新的微观到宏观表征

基本信息

项目摘要

Pelvic organ prolapse (POP), which occurs when a pelvic organ--such as the bladder or uterus--drops from its normal place in the lower belly and pushes against the walls of the vagina, is a very common disorder, affecting half of all women over the age of 50. The quality of life of women with POP is severely compromised: depression, anxiety, social isolation, and sexual dysfunction are serious consequences. Treatment options vary from physical therapy to surgical interventions, but the overall success rates are low. Given the high incidence and low success rates of current procedures for POP, new interventional methods are required. By far, the most important supportive tissues of the uterus, cervix, and vagina complex are the uterosacral ligaments (USLs). These are not true ligaments as their name suggests, but they are membrane-like structures that are primarily composed of collagen and smooth muscle. Despite the crucial supportive role of the USLs and their extensive use in surgical procedures for prolapses, the contractile properties of the USLs remain unknown. This project focuses on filling this gap by providing the first mechanical characterization of the contractile properties of the USL. Toward this end, state-of-the-art mechanical testing and advanced light-based imaging methods will be integrated. The new data will guide the development of high fidelity mathematical models that capture the active mechanics of the USLs at the cell and tissue levels. Progress towards understanding the function of the USLs for the prevention and treatment of POP inevitably depends on the development and use of advanced engineering methods for mechanical characterization. Using computer simulations based on the new mathematical models for the USLs, this project can radically change current conservative methods and surgical procedures for POP, ultimately improving the quality of life of many women. The learning experiences of undergraduate and graduate students working on this project will be enhanced by exchange visits with La Sapienza University, Rome, Italy. The students will acquire unique skills, build professional networks, and gain cross-cultural experiences, thus becoming more competitive in the global workplace. Summer camps, called STEMABILITY, will be organized to serve, train, empower, and mentor high school students with disabilities while also exposing them to science, technology, mathematics, and engineering.The goal of this project is to characterize the active and passive properties of the uterosacral ligaments (USLs) in a rat model and then use that information to develop a new constitutive model incorporating tissue and cell-level properties that can be used for accurate finite element modeling of the pelvic floor. The Research Plan is organized under 3 objectives. The first objective is to determine the active and passive mechanical properties of smooth muscle cells isolated from the rat USL by conducting uniaxial tests and measuring three-dimensional deformations using high sensitivity spectral modulation interferometry (SMI) and spectral-domain phase gradient (SDPG) optical methods. The optical imaging techniques are uniquely capable of quantifying minute (subnanometer) cellular morphological changes during contraction. The second objective is to quantify the active and passive mechanical properties of the rat USL tissue by performing biaxial tests and measuring three-dimensional deformations using state-of-the-art digital image correlation (DIC) and optical tomographic imaging (OPT) methods. The third objective is to describe and predict empirical results by formulating and validating a new constitutive framework that accounts for the active mechanical response of the USL. The first step is deriving new constitutive laws and equations that consider the smooth muscle contribution to the overall mechanical behavior. Mechanisms to be considered include: nonlinearity, anisotropy, elasticity, viscoelasticity and active and passive behavior. The format features three configurations: 1) a reference stress-free state, 2) an active(due to electrical or chemical stimulation) without stress state and 3) an active and passive response with stress state. The evolution law will be derived starting from the description of microscopic mechanisms, e.g., actin-myosin filament sliding, that lead to muscle activation. The parameters of the constitutive equations will be obtained via curve-fitting to experimental data. The resulting set of nonlinear equations will be solved within a finite element computational framework. The new modeling framework will be used to provide scientific-based recommendations for both conservative management and surgical intervention for vaginal vault prolapse and uterine prolapse; for example, findings have implications for planning pelvic floor exercises, for improving mesh grafts for POP repair and for designing surgical interventions that preserve the active and passive mechanical properties of the USL.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
盆腔器官脱垂(POP),当盆腔器官-如膀胱或子宫-从下腹部的正常位置下降并推压阴道壁时发生,是一种非常常见的疾病,影响50岁以上的一半女性。患有POP的女性的生活质量严重受损:抑郁,焦虑,社会孤立和性功能障碍是严重的后果。治疗方案从物理治疗到手术干预各不相同,但总体成功率很低。鉴于目前POP手术的高发病率和低成功率,需要新的介入方法。到目前为止,子宫、宫颈和阴道复合体最重要的支持组织是子宫骶韧带(USL)。这些不是真正的韧带,正如它们的名字所暗示的那样,但它们是主要由胶原蛋白和平滑肌组成的膜状结构。尽管USL的关键支持作用及其在脱垂外科手术中的广泛使用,但USL的收缩特性仍不清楚。该项目的重点是通过提供USL收缩特性的第一个机械表征来填补这一空白。为此,将整合最先进的机械测试和先进的基于光的成像方法。新数据将指导高保真数学模型的开发,这些模型将在细胞和组织水平上捕获USL的主动机制。要想进一步了解超临界流体在预防和处理持久性有机污染物方面的作用,就必须开发和使用先进的工程方法来确定机械特性。使用基于USL新数学模型的计算机模拟,该项目可以从根本上改变POP的当前保守方法和外科手术,最终改善许多妇女的生活质量。通过与意大利罗马La Sapienza大学的交流访问,将加强从事该项目的本科生和研究生的学习经验。学生将获得独特的技能,建立专业网络,并获得跨文化经验,从而在全球工作场所更具竞争力。夏令营,称为STEMABILITY,将组织服务,培训,授权和指导高中残疾学生,同时也让他们接触科学,技术,数学,该项目的目标是在大鼠模型中表征子宫骶骨韧带(USL)的主动和被动特性,然后使用该信息开发一种新的包含组织和细胞的本构模型。水平属性,可用于精确的有限元建模的骨盆底。 研究计划分为三个目标。 第一个目标是通过进行单轴测试和使用高灵敏度光谱调制干涉术(SMI)和谱域相位梯度(SDPG)光学方法测量三维变形来确定从大鼠USL分离的平滑肌细胞的主动和被动力学特性。 光学成像技术独特地能够量化收缩期间微小(亚纳米)的细胞形态变化。 第二个目标是通过使用最先进的数字图像相关(DIC)和光学断层成像(OPT)方法进行双轴测试和测量三维变形来量化大鼠USL组织的主动和被动力学性能。 第三个目标是通过制定和验证一个新的构成框架,占USL的主动机械响应来描述和预测实证结果。 第一步是推导新的本构关系和方程,考虑平滑肌对整体力学行为的贡献。 要考虑的机制包括:非线性,各向异性,弹性,粘弹性和主动和被动行为。 该格式具有三种配置:1)参考无应力状态,2)无应力状态的主动(由于电或化学刺激)和3)有应力状态的主动和被动响应。 演化规律将从微观机制的描述开始推导,例如,肌动蛋白-肌球蛋白丝滑动,导致肌肉激活。 本构方程的参数将通过曲线拟合实验数据获得。 所得到的一组非线性方程将在有限元计算框架内求解。 新的建模框架将用于为阴道穹窿脱垂和子宫脱垂的保守治疗和手术干预提供基于科学的建议;例如,研究结果对计划骨盆底运动有影响,用于改善POP修复的网状移植物和设计保留USL主动和被动机械性能的外科干预措施。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions
  • DOI:
    10.1007/s10439-021-02755-6
  • 发表时间:
    2021-03-22
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Donaldson, Kandace;Huntington, Alyssa;De Vita, Raffaella
  • 通讯作者:
    De Vita, Raffaella
In-plane and out-of-plane deformations of gilt utero-sacral ligaments
镀金子宫骶韧带的面内和面外变形
Supramolecular Fibrous Hydrogel Augmentation of Uterosacral Ligament Suspension for Treatment of Pelvic Organ Prolapse
  • DOI:
    10.1002/adhm.202300086
  • 发表时间:
    2023-05-31
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Miller,Beverly;Wolfe,Wiley;Caliari,Steven R.
  • 通讯作者:
    Caliari,Steven R.
Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments
  • DOI:
    10.1007/s10439-023-03135-y
  • 发表时间:
    2023-01-18
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Donaldson,Kandace;De Vita,Raffaella
  • 通讯作者:
    De Vita,Raffaella
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raffaella De Vita其他文献

Special Issue on the Advances in Engineering for Women’s Health
  • DOI:
    10.1007/s10439-021-02837-5
  • 发表时间:
    2021-08-11
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Raffaella De Vita;Jennifer Munson
  • 通讯作者:
    Jennifer Munson
Testing on novel neutron detectors as alternative to <sup>3</sup>He for security applications
  • DOI:
    10.1016/j.nima.2012.07.025
  • 发表时间:
    2012-12-22
  • 期刊:
  • 影响因子:
  • 作者:
    Paolo Peerani;Alice Tomanin;Sara Pozzi;Jennifer Dolan;Eric Miller;Marek Flaska;Marco Battaglieri;Raffaella De Vita;Luisa Ficini;Giacomo Ottonello;Giovanni Ricco;Geraint Dermody;Calvin Giles
  • 通讯作者:
    Calvin Giles
Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy
  • DOI:
    10.1016/j.engfracmech.2023.109732
  • 发表时间:
    2024-01-23
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher M. Jackson;Jeffrey A. McGuire;Martin E. Losada;Ian Maskery;Ian Ashcroft;Raffaella De Vita;David A. Dillard
  • 通讯作者:
    David A. Dillard
Nonlinear Deformations of Bilayer Lipid Membranes
  • DOI:
    10.1016/j.bpj.2008.12.3209
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raffaella De Vita;Iain W. Stewart
  • 通讯作者:
    Iain W. Stewart
Biomechanical and Compositional Changes in the Murine Uterus with Age
  • DOI:
    10.1007/s10439-025-03709-y
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Mari J. E. Domingo;Triniti N. Vanoven;Raffaella De Vita;Maria E. Florian Rodriguez;Kristin S. Miller;Isaac J. Pence
  • 通讯作者:
    Isaac J. Pence

Raffaella De Vita的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raffaella De Vita', 18)}}的其他基金

Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
BRITE Pivot: Tissue Research Advances for New Surgeries-Facilitating Organ Reconstruction with Mechanics
BRITE 支点:新手术的组织研究进展——利用力学促进器官重建
  • 批准号:
    2135683
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
LEAP-HI: Coordinated Advances in Reproductive Engineering for Health Research (CARE4HeR)
LEAP-HI:健康研究生殖工程的协调进展 (CARE4HeR)
  • 批准号:
    2053851
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Mechanics-based Metrics for Vaginal Tear Evaluation
基于力学的阴道撕裂评估指标
  • 批准号:
    1929731
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Impact of Pregnancy on the Mechanics of Vaginal Tissue
UNS:合作研究:怀孕对阴道组织力学的影响
  • 批准号:
    1511603
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
PECASE: Advancing Treatment of Pelvic Floor Disorders through Discoveries in Elasticity and Viscoelasticity of Uterosacral and Cardinal Ligaments
PECASE:通过子宫骶韧带和主韧带的弹性和粘弹性的发现推进盆底疾病的治疗
  • 批准号:
    1150397
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Micro-Mechanical Characterization of Damage in Ligaments
韧带损伤的微观机械特征
  • 批准号:
    0932024
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似海外基金

DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323696
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323695
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Active mechanical properties of three-dimensional multicellular tissues and their adaptive regulatory mechanisms.
三维多细胞组织的主动机械特性及其适应性调节机制。
  • 批准号:
    21H01209
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Using Active Materials at Liquid Interfaces to Regulate Bacterial Biofilm Mechanical Properties
在液体界面使用活性材料来调节细菌生物膜的机械性能
  • 批准号:
    1635245
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Evolution of the physical, geochemical and mechanical properties of the Alpine Fault Zone: A journey through an active plate boundary
高山断层带物理、地球化学和力学特性的演变:穿越活动板块边界的旅程
  • 批准号:
    NE/J024449/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Evolution of the physical, geochemical and mechanical properties of the Alpine Fault Zone: A journey through an active plate boundary
高山断层带物理、地球化学和力学特性的演变:穿越活动板块边界的旅程
  • 批准号:
    NE/J022128/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Laboratory Study of Phase III SAFOD Core: Physical Properties and Mechanical Behavior of the Active San Andreas Fault Zone
第三期 SAFOD 核心的实验室研究:活动圣安德烈亚斯断层带的物理特性和力学行为
  • 批准号:
    0950517
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NSF-Europe: Mechanical Properties of Thin-Film Active Materials
NSF-欧洲:薄膜活性材料的机械性能
  • 批准号:
    0354113
  • 财政年份:
    2004
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Mechanical properties and dynamics of active actin networks
活性肌动蛋白网络的机械特性和动力学
  • 批准号:
    253348-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Postdoctoral Fellowships
Mechanical properties and dynamics of active actin networks
活性肌动蛋白网络的机械特性和动力学
  • 批准号:
    253348-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了