CAREER: Non-invasive fields for directed 3D microgel assembly for tissue engineering

职业:组织工程定向 3D 微凝胶组装的非侵入性领域

基本信息

  • 批准号:
    1150733
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-15 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

1150733DemirciTissue engineering holds great promise to enable alternative therapies for diseases such as diabetes, kidney, liver, and heart failure. A common approach in tissue engineering is seeding cells in biodegradable scaffolds (top-down), which brings cells together to mimic native tissues. These scaffolds are expected to degrade and be replaced by cellular growth and extracellular matrix deposition over time. Challenges in current tissue engineering approaches are: (i) achieving complex three-dimensional (3D) cellular architecture and organization, (ii) control over cellular proximity and microscale resolution, (iii) enhancing transport through scaffold porosity and embedded microchannels, mimicking vascular network in vivo. Directed assembly of nano- and micro-scale particles is of great interest and has found applications in many fields including electronics, nanomaterials, and holds great potential for tissue engineering. Tissues are made up of repeating functional units. Bottom-up tissue engineering aims to assemble microscale hydrogels (microgels) as building blocks to form organized 3D tissue constructs with spatial control over microarchitecture mimicking native tissues. The intellectual merit of this proposal lies in developing a platform technology that utilizes nanoparticles and microgels as building blocks to create 3D complex multi-layer constructs via external magnetic fields. The final outcome of the project will offer a broadly applicable, nanoparticle-based, "magnetic-induced microgel assembly" platform. This platform would become a broadly available biotechnological tool and method to create 3D tissue models in vitro that could be used for tissue/organ replacement, regenerative medicine, high throughput screening, as well as pharmaceutical drug discovery. The outcomes of this project will open new avenues for physical and biologic research and have a considerable impact on fundamental and applied science, education, and medicine. The broader impacts of this proposal include educational aims to involve, train and mentor: a) local Boston high school students from the lowest income communities through Brigham and Women's Hospital Student Success Jobs Program, b) undergraduate students through Massachusetts Institute of Technology Undergraduate Research Opportunities Program, and c) graduate students to translate book-based knowhow to practice by utilizing the principles identified in this project on the complex multidisciplinary nature of magnetic assembly of microscale structures. The broader impacts of the proposed research cover levels at the local, national and international education with an extended influence on public awareness about the interface of biology and microfluidic technologies. At the local level, the aim is to provide students with experience with interdisciplinary science, allowing them to perform research and learn scientific methods. Further, the principal investigator (PI) will recruit students from Harvard University's underrepresented minority research program. This program brings underrepresented minorities and women to Harvard from other universities every summer allowing them to work on the proposed research project. The PI will also develop graduate courses and arrange field trips with local high schools in educating students about microfluidics research. At the national level, the PI will educate the students and the public at other institutions on technological and scientific challenges. Additionally, the PI will pursue international educational efforts as well as play a role as a lecturer for activities such as NSF supported international summer schools.
1150733 Demirci组织工程学在糖尿病、肾脏、肝脏和心力衰竭等疾病的替代疗法方面前景广阔。 组织工程中的一种常见方法是将细胞接种在可生物降解的支架中(自上而下),将细胞聚集在一起以模拟天然组织。 预期这些支架随着时间的推移会降解并被细胞生长和细胞外基质沉积所取代。 当前组织工程方法中的挑战是:(i)实现复杂的三维(3D)细胞结构和组织,(ii)控制细胞接近度和微尺度分辨率,(iii)增强通过支架孔隙度和嵌入的微通道的运输,模拟体内血管网络。纳米和微米尺度粒子的定向组装是一个非常有趣的研究领域,在电子学、纳米材料等领域都有应用,在组织工程领域也有很大的潜力。组织由重复的功能单位组成。 自下而上的组织工程旨在组装微尺度水凝胶(微凝胶)作为构建块,以形成有组织的3D组织结构,并对模仿天然组织的微结构进行空间控制。 该提案的智力价值在于开发一种平台技术,该技术利用纳米颗粒和微凝胶作为构建模块,通过外部磁场创建3D复杂的多层结构。 该项目的最终成果将提供一个广泛适用的、基于纳米颗粒的“磁诱导微凝胶组装”平台。 该平台将成为一种广泛可用的生物技术工具和方法,用于在体外创建3D组织模型,可用于组织/器官替代,再生医学,高通量筛选以及药物发现。该项目的成果将为物理和生物研究开辟新的途径,并对基础和应用科学、教育和医学产生重大影响。这一建议的更广泛影响包括教育目标,即参与、培训和指导:a)通过布里格姆妇女医院学生成功就业计划,来自最低收入社区的波士顿当地高中学生,B)通过马萨诸塞州理工学院本科生研究机会计划,以及c)研究生通过利用本项目中确定的关于微尺度结构的磁性组装的复杂多学科性质的原理,将基于书本的知识转化为实践。拟议研究的更广泛影响涵盖地方,国家和国际教育层面,并对公众对生物学和微流体技术界面的认识产生广泛影响。 在地方一级,目的是为学生提供跨学科科学的经验,使他们能够进行研究和学习科学方法。此外,首席研究员(PI)将从哈佛大学代表性不足的少数民族研究项目中招募学生。 这个项目每年夏天都把代表性不足的少数民族和妇女从其他大学带到哈佛,让他们从事拟议中的研究项目。 PI还将开发研究生课程,并与当地高中安排实地考察,教育学生有关微流体研究。 在国家一级,PI将教育学生和公众在其他机构的技术和科学挑战。 此外,PI将继续国际教育工作,并在NSF支持的国际暑期学校等活动中担任讲师。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Utkan Demirci其他文献

Emerging organoid models: leaping forward in cancer research
  • DOI:
    10.1186/s13045-019-0832-4
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    40.400
  • 作者:
    Han Fan;Utkan Demirci;Pu Chen
  • 通讯作者:
    Pu Chen
Acute HIV detection by viral lysate impedance spectroscopy on a microchip
通过微芯片上的病毒裂解物阻抗谱检测急性 HIV
C-15: Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species
  • DOI:
    10.1016/j.cryobiol.2014.09.302
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Utkan Demirci
  • 通讯作者:
    Utkan Demirci
Correction: Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound
  • DOI:
    10.1186/s13287-022-03210-6
  • 发表时间:
    2022-12-20
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Mehdi Razavi;Tanchen Ren;Fengyang Zheng;Arsenii Telichko;Jing Wang;Jeremy J. Dahl;Utkan Demirci;Avnesh S. Thakor
  • 通讯作者:
    Avnesh S. Thakor
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care
  • DOI:
    10.1016/j.biotechadv.2019.107440
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Zihan Li;Luca Leustean;Fatih Inci;Min Zheng;Utkan Demirci;Shuqi Wang
  • 通讯作者:
    Shuqi Wang

Utkan Demirci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Utkan Demirci', 18)}}的其他基金

Collaborative Research: EAGER: Biomanufacturing: Bioengineering of 3-dimensional brain surrogate tissue models
合作研究:EAGER:生物制造:3 维脑替代组织模型的生物工程
  • 批准号:
    1547791
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Non-invasive fields for directed 3D microgel assembly for tissue engineering
职业:组织工程定向 3D 微凝胶组装的非侵入性领域
  • 批准号:
    1461602
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimization of Sperm Sorting in Microfluidic Channels Using Coarse-Grained Modeling
合作研究:使用粗粒度模型优化微流体通道中的精子分选
  • 批准号:
    1464673
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimization of Sperm Sorting in Microfluidic Channels Using Coarse-Grained Modeling
合作研究:使用粗粒度模型优化微流体通道中的精子分选
  • 批准号:
    1309938
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
  • 批准号:
    32301796
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
  • 批准号:
    82303936
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
  • 批准号:
    12301258
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
  • 批准号:
    32170797
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
  • 批准号:
    LQ21C060001
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
  • 批准号:
    EP/X031950/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
  • 批准号:
    2402381
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Creating a non-invasive window into the mind
创建一个非侵入性的心灵窗口
  • 批准号:
    DP240102254
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
Non-Invasive Testing device for Anaemia (NITA)
非侵入性贫血检测设备 (NITA)
  • 批准号:
    MR/Y503356/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Bionic sensors for non-invasive health monitoring
用于无创健康监测的仿生传感器
  • 批准号:
    MR/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
In-vivo studies for a quantum optical non-invasive glucose sensor
量子光学非侵入式葡萄糖传感器的体内研究
  • 批准号:
    10105375
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Launchpad
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Development of Radio Frequency Non-Invasive Nanosecond Pulse Therapeutic Devices
职业:射频非侵入性纳秒脉冲治疗装置的开发
  • 批准号:
    2341047
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
  • 批准号:
    2238365
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了