CAREER: Development of Radio Frequency Non-Invasive Nanosecond Pulse Therapeutic Devices
职业:射频非侵入性纳秒脉冲治疗装置的开发
基本信息
- 批准号:2341047
- 负责人:
- 金额:$ 48.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Prior to the global pandemic, mental and neurological health conditions such as anxiety and depression were already increasing at alarming rates. Now, according to the World Health Organization (WHO), post pandemic incidence of such conditions has increased by 25-35% worldwide and the WHO is calling for all countries to step up mental health services and support. This highlights the need for more accessible and less invasive treatment options for neurological disorders. Electrical neurostimulation methodologies, such as transcranial magnetic stimulation (TMS), have proven effective in treating various neurological disorders. TMS stimulates the brain using short-duration pulses of electrical current induced by a magnetic field. However, TMS requires stable high-power systems typically found in hospital settings. TMS treatment plans involve daily hospital visits for three weeks, or sometimes multiple treatments in a single day, which limits accessibility to patients who are already managing depression or anxiety symptoms such as social withdrawal and sleep irregularities that disrupt their everyday routines. Moreover, attending regular in-person treatment sessions may not be feasible for those in rural or low-income demographics. However, nanosecond electrical pulses (NEPs), distinguished by their high intensity and extremely narrow pulse width, have emerged as a promising therapeutic approach for various neurological disorders. NEP has demonstrated remarkable efficacy in stimulating cells and nerves without causing harm and has potential for portable devices that would help reduce the need for hospital visits and greatly increase accessibility. This project seeks to understand the limitations of traditional NEPs and find solutions to adapt them to smaller devices. The project will produce a medical device prototype incorporating the research findings, broadening the range of non-invasive, accessible neurological treatment options for patients. The project's K-12 outreach, in collaboration with Sierra Nevada Journeys and employing biosensors in Family Science Nights and adult programs, will enhance STEM education through their feedback expertise.NEPs offer substantial neuromodulation potential, capable of replicating physiological stimuli for non-invasive treatment of neurological disorders. Despite their potential, NEPs encounter obstacles in non-invasive in-vivo applications due to constraints in penetration depth and signal distortion through human or animal body. The objectives of this study are to (1) understand the limitations of traditional NEPs and find solutions to adapt them to smaller devices, (2) address the issue of signal distortions caused by varying anatomical differences, and (3) develop a medical device prototype that incorporates solutions to the aforementioned challenges. Leveraging the potential of NEPs, the research will employ RF signals for enhanced penetration, utilize deep-learning techniques for anatomical compensation, and incorporate wider pulse widths and MHz pulse repetition rates to lower the threshold voltage. The use of digitally generated RF-NEP could represent a significant innovative shift in neurostimulation methodology. This non-invasive approach allows for deeper penetration into animal bodies while including specific waveforms that satisfy specific needs. The integration of these innovative solutions into the design of a new medical device speaks to the translational potential of this research. This project anticipates advancing theoretical knowledge and a concrete, tangible improvement in neurostimulation treatment methods, contributing significantly to the broader neuroscience and neurological therapeutics field.This project is jointly funded by the Communications, Circuits and Sensing Systems (CCSS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在全球大流行之前,焦虑和抑郁等精神和神经健康状况已经以惊人的速度增加。现在,根据世界卫生组织(WHO)的数据,大流行后全球此类疾病的发病率增加了25-35%,WHO呼吁所有国家加强精神卫生服务和支持。这突出了对神经系统疾病更容易获得和侵入性更小的治疗选择的需求。电神经刺激方法,例如经颅磁刺激(TMS),已经证明在治疗各种神经障碍中是有效的。经颅磁刺激使用由磁场感应的电流的短持续时间脉冲来刺激大脑。然而,TMS需要稳定的高功率系统,通常在医院环境中找到。TMS治疗计划包括三周的每日医院访问,有时一天内进行多次治疗,这限制了已经管理抑郁或焦虑症状的患者的可及性,例如社交退缩和睡眠不规律,这些症状会扰乱他们的日常生活。此外,对于农村或低收入人口来说,参加定期的面对面治疗可能不可行。然而,纳秒电脉冲(NEPs),其高强度和极窄的脉冲宽度的区别,已成为一种有前途的治疗方法,用于各种神经系统疾病。NEP在刺激细胞和神经方面表现出显着的功效,而不会造成伤害,并且具有便携式设备的潜力,这将有助于减少对医院访问的需求,并大大增加可访问性。该项目旨在了解传统NEP的局限性,并找到解决方案,使其适应更小的设备。该项目将生产一种医疗设备原型,结合研究结果,扩大患者的非侵入性,可获得的神经治疗选择范围。该项目与Sierra内华达州的Nepneys合作,在家庭科学之夜和成人项目中使用生物传感器,将通过他们的反馈专业知识加强STEM教育。NEPs提供大量的神经调节潜力,能够复制生理刺激,用于神经系统疾病的非侵入性治疗。尽管NEP具有潜力,但由于穿透深度和穿过人体或动物体的信号失真的限制,NEP在非侵入性体内应用中遇到障碍。本研究的目的是:(1)了解传统NEP的局限性,并找到使其适用于较小器械的解决方案;(2)解决不同解剖结构差异引起的信号失真问题;(3)开发一种医疗器械原型,该原型包含上述挑战的解决方案。利用NEP的潜力,该研究将采用RF信号来增强穿透力,利用深度学习技术进行解剖补偿,并采用更宽的脉冲宽度和MHz脉冲重复率来降低阈值电压。使用数字生成的RF-NEP可能代表神经刺激方法的重大创新转变。这种非侵入性方法允许更深入地渗透到动物体内,同时包括满足特定需求的特定波形。将这些创新解决方案整合到新医疗器械的设计中,说明了这项研究的转化潜力。该项目预计将推进神经刺激治疗方法的理论知识和具体,切实的改进,为更广泛的神经科学和神经治疗学领域做出重大贡献。该项目由通信,电路和传感系统(CCSS)计划和既定计划,以刺激竞争研究(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji YOON其他文献
Ji YOON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
DARA Development in Africa with Radio Astronomy Phase 3
射电天文学在非洲发展 DARA 第三阶段
- 批准号:
ST/Y006100/1 - 财政年份:2024
- 资助金额:
$ 48.79万 - 项目类别:
Research Grant
Development of Concrete Building Material with Excellent Radio Wave Permeability
具有优异电波透过性的混凝土建筑材料的开发
- 批准号:
22KJ1334 - 财政年份:2023
- 资助金额:
$ 48.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of efficient algorithms using nonconvex nonsmooth optimization problem structure and their application to radio interferometers
使用非凸非光滑优化问题结构开发高效算法及其在无线电干涉仪中的应用
- 批准号:
23K19953 - 财政年份:2023
- 资助金额:
$ 48.79万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Reform Radio: Audio Production Business Development
Reform Radio:音频制作业务发展
- 批准号:
10066618 - 财政年份:2023
- 资助金额:
$ 48.79万 - 项目类别:
Collaborative R&D
Development of tumor-targeted nanodelivery systems for novel inhibitors of ERCC1/XPF for chemo and radio-sensitization of solid tumors
开发用于实体瘤化疗和放射增敏的新型 ERCC1/XPF 抑制剂的肿瘤靶向纳米递送系统
- 批准号:
495239 - 财政年份:2023
- 资助金额:
$ 48.79万 - 项目类别:
5G Open RAN IAB radio stack Development via open source solutions
5G Open RAN IAB 无线电堆栈 通过开源解决方案进行开发
- 批准号:
10031196 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Small Business Research Initiative
On the Development of Outriggers for the Localisation of Fast Radio Bursts with the Canadian Hydrogen Intensity Mapping Experiment
通过加拿大氢强度测绘实验开发用于快速射电暴定位的支腿
- 批准号:
546800-2020 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Postgraduate Scholarships - Doctoral
Models of avian migration: development and empirical tests using automated radio-telemetry
鸟类迁徙模型:使用自动无线电遥测技术的开发和实证测试
- 批准号:
RGPIN-2020-06465 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Discovery Grants Program - Individual
Development of a pseudo-scale model experimental system for the use of radio waves under shallow water.
开发浅水下使用无线电波的伪比例模型实验系统。
- 批准号:
22H01485 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of radio-theranostics drugs against cancers using anti-EphA2 antibody
使用抗 EphA2 抗体开发抗癌放射治疗药物
- 批准号:
22H02928 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)