CAREER: Exploiting Quantum Optoelectronic Properties of Dirac Quasiparticles in Graphene

职业:利用石墨烯中狄拉克准粒子的量子光电特性

基本信息

  • 批准号:
    1150719
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-15 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

**** TECHNICAL ABSTRACT****This project will investigate and enhance understanding of the quantum electronic and optoelectronic phenomena of graphene - a system with two-dimensional Dirac cone dispersion. Graphene has unique electronic and symmetry properties distinct from other 2D electronic systems, such as the chiral massless dispersion of low energy electrons in single-layer graphene, the tunable effective mass and bandgap in bilayer graphene, and unusual quantum Hall effects with large Landau level spacing at moderate magnetic fields. The integration of ultrafast pump-probe spectroscopy with electrical transport will lead to the investigation of the electronic properties of such systems while benefiting from advanced nano-optical spectroscopy techniques. This proposal comprises investigations of both spatial and temporal dynamics of non-equilibrium excitations with and without magnetic fields, the photovoltaic Hall effect with circularly polarized light, Berry-phase related valley Hall effects, broken-symmetry states, and photocurrent generation in the quantum Hall regime. A fundamental understanding of this technologically important material may lead to new applications including high-speed and low power-consumption electronics, broadband communication, new sensing technologies, and photovoltaics. This multidisciplinary research program provides an excellent platform for undergraduate and graduate students to learn physics, device engineering, and materials science, and for post-doctoral researchers to gain professional experience.****NON-TECHNICAL ABSTRACT****As silicon technology faces fundamental limits, breakthroughs in electronics are likely to rely on other materials which allow the exploitation of features and concepts not available in the silicon/oxide system. One promising system is graphene, a single layer of graphite. What sets graphene apart from conventional semiconductors is that the electrons in the graphene behave like photons, traveling with an effective speed just 300 times smaller than the speed of light. This unique feature gives graphene superior physical properties for potential new electronic applications. This project will exploit the novel electronic and optical properties of graphene through a combination of material synthesis, device fabrication, and optoelectronic measurements. In particularly, electron dynamics will be probed by ultrafast laser pulses with a pulse width 13 orders of magnitude smaller than one second. The obtained physical understanding of this technologically important material may lead to high-speed and low power-consumption electronics, broadband communication, new sensing technologies, and photovoltaics. The proposed multidisciplinary research program provides an excellent platform for undergraduate and graduate students to learn physics, device engineering, and materials science, and for post-doctoral researchers to gain professional experience.
*技术摘要*本项目将研究和加深对石墨烯的量子电子和光电子现象的理解,石墨烯是一个具有二维狄拉克锥色散的系统。石墨烯具有不同于其他二维电子系统的独特的电子和对称性,如低能电子在单层石墨烯中的手性无质量色散,在双层石墨烯中的有效质量和带隙可调,以及在中等磁场下具有大朗道能级间距的不寻常的量子霍尔效应。将超快泵浦-探测光谱与电子输运相结合,将有助于研究这类体系的电学性质,同时受益于先进的纳米光学光谱技术。该方案包括研究有磁场和无磁场的非平衡激发的时空动力学,圆偏振光的光伏霍尔效应,与Berry相有关的谷霍尔效应,对称破缺态,以及量子霍尔区中的光电流产生。对这种具有重要技术意义的材料的基本了解可能会导致新的应用,包括高速和低功耗电子产品、宽带通信、新的传感技术和光伏。这一多学科的研究计划为本科生和研究生提供了一个学习物理、设备工程和材料科学的极好平台,并为博士后研究人员获得专业经验提供了一个极好的平台。*非技术摘要*由于硅技术面临根本限制,电子技术的突破可能依赖于其他材料,这些材料允许利用硅/氧化物系统中没有的特征和概念。一个有希望的系统是石墨烯,一种单层石墨层。石墨烯与传统半导体的不同之处在于,石墨烯中的电子行为像光子,有效速度仅比光速小300倍。这一独特的功能使石墨烯具有优异的物理性能,可用于潜在的新电子应用。该项目将通过材料合成、器件制造和光电子测量相结合的方式来开发石墨烯的新的电子和光学性质。特别是,电子动力学将由脉冲宽度小于一秒13个数量级的超快激光脉冲来探测。对这种具有重要技术意义的材料的物理理解可能会导致高速和低功耗的电子产品、宽带通信、新的传感技术和光伏。拟议的多学科研究计划为本科生和研究生提供了一个学习物理、设备工程和材料科学的极好平台,并为博士后研究人员获得专业经验提供了一个极好的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Xu其他文献

Using deep learning to identify the depth of metal surface defects with narrowband SAW signals
利用深度学习通过窄带 SAW 信号识别金属表面缺陷的深度
  • DOI:
    10.1016/j.optlastec.2022.108758
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Ding;Haopeng Wan;Qiangbing Lu;Zhiheng Chen;Kangning Jia;Junyan Ge;Xuejun Yan;Xiaodong Xu;Guanbing Ma;Xi Chen;Haiou Zhang;GuoKuan Li;Minghui Lu;Yanfeng Chen
  • 通讯作者:
    Yanfeng Chen
Energy efficiency optimization-oriented control plane and user plane adaptation with a frameless network architecture for 5G
面向能效优化的控制平面和用户平面适配,采用无框架网络架构,适用于 5G
Sub-15-ns Passively Q-Switched Er YSGG Laser at 2.8µm With Fe ZnSe Saturable Absorber
亚 15 纳秒被动调 Q Er YSGG 激光器,波长 2.8 µm,带 Fe ZnSe 可饱和吸收体
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzhao Zhang;Bin Xu;Qingyu Tian;Zhengqian Luo;Huiying Xu;Zhiping Cai;Dunlu Sun;Qingli Zhang;Peng Liu;Xiaodong Xu;Jian Zhang
  • 通讯作者:
    Jian Zhang
A Cooperative Transmission Scheme for the Secure Wireless Multicasting
一种安全无线组播的协作传输方案
  • DOI:
    10.1007/s11277-013-1563-4
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Peng Xu;Xiaodong Xu
  • 通讯作者:
    Xiaodong Xu
Clustered Fault Tolerance TSV Planning for 3D Integrated Circuits
3D 集成电路的集群容错 TSV 规划

Xiaodong Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Xu', 18)}}的其他基金

Exploring van der Waals Ferromagnetic Semiconductor Chromium Triiodide
探索范德华铁磁半导体三碘化铬
  • 批准号:
    1708419
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
  • 批准号:
    2237004
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Establishing and exploiting Quantum advantage in superconducting Quantum annealer
建立和利用超导量子退火炉的量子优势
  • 批准号:
    580721-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Alliance Grants
Exploiting first-generation quantum computers
利用第一代量子计算机
  • 批准号:
    2730536
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Engineering Quantum Sensors Exploiting Rabi Splitting in Plexcitonic Nanoparticle Assemblies
利用有机纳米粒子组件中的拉比分裂工程量子传感器
  • 批准号:
    580947-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Alliance Grants
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
  • 批准号:
    RGPIN-2018-05192
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and exploiting quantum effects in quantum communications and entanglement manipulation
理解和利用量子通信和纠缠操纵中的量子效应
  • 批准号:
    RGPIN-2016-03883
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
  • 批准号:
    RGPIN-2018-05192
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting first-generation quantum computers
利用第一代量子计算机
  • 批准号:
    2594583
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
  • 批准号:
    RGPIN-2018-05192
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了