Engineering Quantum Sensors Exploiting Rabi Splitting in Plexcitonic Nanoparticle Assemblies

利用有机纳米粒子组件中的拉比分裂工程量子传感器

基本信息

  • 批准号:
    580947-2022
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Demonstrated quantum technologies based on single atomic emitters coupled to resonant cavities require cryogenic temperatures and exhibit fragile light-matter coupling. Plexcitonic resonators based on strong plasmon-exciton coupling exhibit a large Rabi splitting at room temperature in the solid-state indicative of strong coupling. Preliminary results indicate that the Rabi splitting in a plexcitonic system consisting of organic J-aggregates coupled to gold nanoislands is highly sensitive to ambient humidity. Although metals have Ohmic losses, the plasmonic local field enhancement compensates for these losses and enables strong coupling. Consequently, the sensing action observed by us is robust and reproducible. This motivated us to further improve and optimize the quantum plexcitonic sensor through extending the decoherence timescales by reducing energy dissipation. Another step in this direction involves forming plasmonic molecules (dimers and trimers) from Ag/Au nanocubes and nanoprisms through control of the inter-particle spacing during nanofabrication. Such plasmonic molecules are expected to exhibit a dramatic local field enhancement, which aids sensitivity and facilitates strong coupling. This project also aims to measure the subradiance/superradiance behavior of plexcitonic resonators through steady-state and time-resolved photoluminescence spectroscopy and imaging. This is a collaborative project involving the Shankar Group in Semiconductor Nanomaterials & Devices at the University of Alberta in Edmonton, Canada and the Shouvik Datta Group in Quantum Optoelectronic Devices at IISER-Pune, India. This project will leverage the Datta Group's expertise in measuring spatio-temporal coherence of emitted photons to achieve a deeper understanding of the plexcitonic quantum system. Plexcitons will provide a new avenue to create and manipulate entangled states close to room temperature, with the resulting Rabi splitting easily tunable by electrical, thermal, chemical or optical stimuli. This project aims to address the critical need for non-cryogenic photonic quantum technologies.
基于耦合到谐振腔的单原子发射器的已证明量子技术需要低温,并且表现出脆弱的光-物质耦合。基于强等离子体激元-激子耦合的丛子谐振器在室温下表现出强耦合的固态指示的大拉比分裂。初步结果表明,拉比分裂的plexcitonic系统组成的有机J-聚集体耦合到金纳米岛是高度敏感的环境湿度。虽然金属具有欧姆损耗,但等离子体激元局部场增强补偿这些损耗并实现强耦合。因此,我们观察到的传感动作是鲁棒的和可再现的。这促使我们进一步改进和优化量子plexcitonic传感器,通过延长退相干时间尺度,减少能量耗散。在该方向上的另一个步骤涉及通过在纳米制造期间控制颗粒间间距由Ag/Au纳米立方体和纳米棱镜形成等离子体分子(二聚体和三聚体)。预期这种等离子体分子表现出显著的局部场增强,这有助于灵敏度并促进强耦合。本项目还旨在通过稳态和时间分辨光致发光光谱和成像来测量plexcitonic谐振器的亚辐射/超辐射行为。这是一个合作项目,涉及在埃德蒙顿,加拿大的阿尔伯塔大学的半导体纳米材料和设备的Shankar集团和量子光电器件的Shouvik Datta集团在印度的IISER浦那。该项目将利用Datta Group在测量发射光子的时空相干性方面的专业知识,以更深入地了解plexcitonic量子系统。Plexcitons将提供一种新的途径来创建和操纵接近室温的纠缠态,由此产生的拉比分裂很容易通过电,热,化学或光学刺激来调节。该项目旨在解决对非低温光子量子技术的迫切需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shankar, KarthikK其他文献

Shankar, KarthikK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shankar, KarthikK', 18)}}的其他基金

Electrochemical and Spectroelectrochemical Sensing Devices Based On Active Layers Consisting of Carbon Nitride Nanosheets
基于氮化碳纳米片活性层的电化学和光谱电化学传感装置
  • 批准号:
    580529-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next generation diamond quantum sensors for future industries
面向未来行业的下一代金刚石量子传感器
  • 批准号:
    IM240100073
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Mid-Career Industry Fellowships
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Advanced Quantum Sensors for Next-Generation Sensing Applications
适用于下一代传感应用的先进量子传感器
  • 批准号:
    FT210100809
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    ARC Future Fellowships
Integrating quantum sensors with bespoke quantum error correction
将量子传感器与定制量子纠错集成
  • 批准号:
    EP/W028115/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Printed Infrared Quantum Dot Photodetectors and Large-scale Image Sensors
印刷红外量子点光电探测器和大型图像传感器
  • 批准号:
    DE230101711
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Early Career Researcher Award
Atomic resolution imaging using quantum sensors enabled by smart adaptive control
使用智能自适应控制启用的量子传感器进行原子分辨率成像
  • 批准号:
    2890685
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
IAQD - Unlocking the potential of Short Wave Infrared (SWIR) sensors with novel InAs Quantum Dots technology
IAQD - 利用新型 InAs 量子点技术释放短波红外 (SWIR) 传感器的潜力
  • 批准号:
    10042304
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
MWQD - Realising the true potential of Mid-Wave Infrared Sensors by improving affordability and adoption via Quantum Dot technology
MWQD - 通过量子点技术提高可承受性和采用率,实现中波红外传感器的真正潜力
  • 批准号:
    10066153
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
3LX - Developing low-cost, low-energy, low-detection limit X-Ray image sensors for critical industries using quantum dot technology
3LX - 使用量子点技术为关键行业开发低成本、低能耗、低检测限的 X 射线图像传感器
  • 批准号:
    10077184
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了