EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
基本信息
- 批准号:2237004
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is investigating a key generation and a key distribution framework that is devoid of any practical side-channels that an adversary could exploit into eavesdrop into private communications or private data. With continual advancements in computing power and the possibility of an operational quantum computer becoming a reality, the vulnerability of classical public-key distribution algorithms is a major concern. While quantum-based key distribution can potentially address some of the security vulnerabilities associated with classic key distribution techniques, the current state-of-the-art quantum key-distribution systems require dedicated and specialized peer-to-peer communication links. Not only do these links require careful maintenance and calibration to ensure quantum-coherence, compared to classical approaches, these systems are not portable and cannot be used for key distribution over public or unsecured channels. This project will also provide excellent training opportunities for REU students and students belonging to underrepresented communities in the interdisciplinary fields of quantum devices, circuit design, and cybersecurity. We plan to organize a special cybersecurity workshop where our goal will be to showcase the self-powered time-keeping technology to researchers, practitioners and industrial partners.The proposed key generation and key distribution framework is exploiting the synchronization capability and the security features of our previously reported self-powered time-keeping devices that operate on the physics of quantum-tunneling. An array of synchronized timers is used to emulate the functionality of phase-synchronized photons in the context of quantum currency and quantum key-exchange protocols. The physics of quantum-tunneling and self-powered operation ensures that no power or electromagnetic side-channel can be exploited by an adversary to probe the state of the timers. 1. The project is investigating a self-powered phase-locking and synchronization principle combining the physics of Fowler-Nordheim quantum-tunneling of electrons with spectral noise-shaping. The project is also investigating methods to restrict access to the internal timer-state which will self-destruct after a single measurement. In this manner, the state of the timers cannot be reverse engineered. 2. The project is investigating a system-on-chip architecture will exploit the synchronization between self-powered timers to generate keys that can be used for communications and computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目正在调查一种密钥生成和密钥分发框架,该框架缺乏任何实用的旁路,对手可以利用这些旁路窃听私人通信或私人数据。随着计算能力的不断提高和运行量子计算机的可能性成为现实,经典公钥分发算法的脆弱性是一个主要问题。虽然基于量子的密钥分发可以潜在地解决与经典密钥分发技术相关的一些安全漏洞,但当前最先进的量子密钥分发系统需要专用的和专门的对等通信链路。这些链路不仅需要仔细维护和校准,以确保量子相干,与经典方法相比,这些系统不便于携带,也不能用于公共或不安全通道上的密钥分发。该项目还将在量子器件、电路设计和网络安全等跨学科领域为REU学生和属于代表性不足社区的学生提供极好的培训机会。我们计划组织一个特别的网络安全研讨会,我们的目标将是向研究人员、从业者和行业合作伙伴展示自供电计时技术。拟议的密钥生成和密钥分发框架利用了我们之前报道的自供电计时设备的同步能力和安全功能,这些设备运行在量子隧道的物理上。同步定时器阵列用于在量子货币和量子密钥交换协议的上下文中模拟相位同步光子的功能。量子隧道和自供电操作的物理原理确保了任何电力或电磁侧通道都不能被对手利用来探测定时器的状态。1.该项目正在研究一种将电子的Fowler-Nordheim量子隧道物理与光谱噪声整形相结合的自供电锁相和同步原理。该项目还在研究限制访问内部计时器状态的方法,该状态将在一次测量后自毁。以这种方式,定时器的状态不能被反向工程。2.该项目正在研究一种片上系统架构,该架构将利用自供电定时器之间的同步来生成可用于通信和计算的密钥。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GPS-free synchronized pseudo-random number generators for internet-of-things
用于物联网的无 GPS 同步伪随机数生成器
- DOI:10.3389/fcomp.2023.1157629
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Rahman, Mustafizur;Chakrabartty, Shantanu
- 通讯作者:Chakrabartty, Shantanu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shantanu Chakrabartty其他文献
A compact and energy-efficient ultrasound receiver using PTAT reference circuit
- DOI:
10.1016/j.mejo.2019.104656 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yarub Alazzawi;Oindrila Chatterjee;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Co-detection: Ultra-reliable nanoparticle-based electrical detection of biomolecules in the presence of large background interference
- DOI:
10.1016/j.bios.2010.08.067 - 发表时间:
2010-11-15 - 期刊:
- 影响因子:
- 作者:
Yang Liu;Ming Gu;Evangelyn C. Alocilja;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Shantanu Chakrabartty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shantanu Chakrabartty', 18)}}的其他基金
RCN-SC: Research Coordination Network for Design and Testing of Neuromorphic Integrated Circuits
RCN-SC:神经形态集成电路设计和测试的研究协调网络
- 批准号:
2332166 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208770 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Addressing neuron-to-network energy-efficiency gap by investigating neuromorphic processors as a unified dynamical system
通过研究神经形态处理器作为统一的动态系统来解决神经元到网络的能效差距
- 批准号:
1935073 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CPS:TTP Option: Synergy: Collaborative Research: Internet of Self-powered Sensors - Towards a Scalable Long-term Condition-based Monitoring and Maintenance of Civil Infrastructure
CPS:TTP 选项:协同:协作研究:自供电传感器互联网 - 实现民用基础设施可扩展的长期基于状态的监测和维护
- 批准号:
1646380 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1550096 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
STARSS: Small: Collaborative: Zero-Power Dynamic Signature for Trust Verification of Passive Sensors and Tags
STARSS:小型:协作:用于无源传感器和标签的信任验证的零功耗动态签名
- 批准号:
1525476 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1505767 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: FAST: A Simulation and Analysis Framework for Designing Large-Scale Biomolecular-Silicon Hybrid Circuits
SHF:小型:FAST:用于设计大规模生物分子硅混合电路的仿真和分析框架
- 批准号:
1533905 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Self-powered Micro-sensing for Embedded and Implantable Structural Health Monitoring
职业:嵌入式和植入式结构健康监测自供电微传感的综合研究和教育
- 批准号:
1533532 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AIR: Development and Evaluation of Self-Powered Piezo-Floating-Gate Sensor Chipsets for Embedded and Implantable Structural Health Monitoring
AIR:用于嵌入式和植入式结构健康监测的自供电压电浮栅传感器芯片组的开发和评估
- 批准号:
1127606 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
- 批准号:
10030783 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Establishing and exploiting Quantum advantage in superconducting Quantum annealer
建立和利用超导量子退火炉的量子优势
- 批准号:
580721-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Engineering Quantum Sensors Exploiting Rabi Splitting in Plexcitonic Nanoparticle Assemblies
利用有机纳米粒子组件中的拉比分裂工程量子传感器
- 批准号:
580947-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Exploiting first-generation quantum computers
利用第一代量子计算机
- 批准号:
2730536 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
- 批准号:
RGPIN-2018-05192 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Understanding and exploiting quantum effects in quantum communications and entanglement manipulation
理解和利用量子通信和纠缠操纵中的量子效应
- 批准号:
RGPIN-2016-03883 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
- 批准号:
RGPIN-2018-05192 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Exploiting first-generation quantum computers
利用第一代量子计算机
- 批准号:
2594583 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
- 批准号:
RGPIN-2018-05192 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Building and exploiting high quantum volume ion-trap processors
构建和利用高量子体积离子阱处理器
- 批准号:
2445145 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Studentship