CAREER: Experimental studies of turbulent inflow and wake relevant to marine hydrokinetic (MHK) energy conversion
职业:与海洋流体动力 (MHK) 能量转换相关的湍流流入和尾流的实验研究
基本信息
- 批准号:1150797
- 负责人:
- 金额:$ 40.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1150797-WosnikMarine hydrokinetic (MHK) energy conversion, comprised of tidal/ocean current and wave energy, is likely one of the more environmentally sustainable ways to generate electricity. The overall objective of this project is to better understand the spatio-temporal structure of the turbulent inflow and wakes at scales relevant to marine hydrokinetic energy conversion. A suite of state-of-the-art experimental fluid dynamics instrumentation will be employed for turbulence characterization, and both laboratory and open water (tidal estuary) test facilities will be used. The study will focus on tidal energy, however, the results are applicable to ocean and river current energy conversion and wave energy as well. Intellectual Merit: MHK energy conversion devices are subjected to a wide range of turbulent scales. For example, the fastest tidal currents often occur in regions of complex bathymetry, which creates complex boundary layers and flow distortions in locations where MHK devices will be sited. Initial tests have shown that the performance of MHK devices, as well as structural fatigue and failure, are closely linked to turbulence. Downstream, turbulence generated by MHK devices and their support structures can have an effect on the environment and organisms in the water column. The robust Acoustic Doppler Current Profilers (ADCPs) commonly used for open water measurements are limited to low sampling rates due to their operational principle, which results in insufficient spatial resolution for scales of turbulence relevant to MHK devices. On the other hand, experimental techniques with higher temporal and spatial resolution are typically limited to laboratory environments. For this project, turbulent inflow and hydrokinetic turbine wakes will first be measured in a large cross-section combined tow-wave tank comparing ADCPs, multi-point Acoustic Doppler Velocimetry (ADV) and underwater high frame-rate Particle Image Velocimetry (HFR-PIV), to establish baselines on how each instrument measures spatio-temporal flow structures. Then turbulent inflow and hydrokinetic turbine wakes will be measured at an open-water tidal energy test site comparing ADCP and ADV. Data from the laboratory and the open-water deployments will be used in mathematical modeling with low-dimensional model and stochastic estimation techniques to predict turbulent flow states from ADCP profiles and ADV reference measurements. The project will thus fill an instrumentation ?scale gap? that currently exists.Broader Impacts: The project will produce previously unavailable information on the spatio-temporal structure of MHK-relevant flows. It will improve our understanding of the capabilities of the different measurement techniques in an MHK environment and create general predictive tools, which will make possible the study of other phenomena and processes in the marine environment. The results of this research will enable higher-fidelity resource assessment and more accurate energy conversion device evaluation, yield previously inaccessible flow data for fluid-structure interaction, generate data for device array layouts, facilitate environmental impact assessments, and, ultimately, lead to improved designs. It will thus help the United States? MHK industry to become successful. The integration of research and education activities will be achieved through inclusion of research in senior/graduate courses in Renewable Energy and Experimental Fluid Dynamics, industrial research opportunities as part of graduate training, outreach and continuing education, and participation in university open house events, laboratory tours and demonstrations. The outreach will include activities with the NH Seacoast Science Center and the NH Children?s Museum. Underrepresented groups in engineering will be actively recruited through the UNH Office of Diversity and student societies, to work on the proposed research as undergraduate researchers and potential Ph.D. students. The project will be used to attract students interested in the fields of renewable energy, flow measurement and turbulence, and help train the workforce necessary for advancing this new industry.
海洋水动力(MHK)能源转换由潮汐/洋流和波浪能组成,可能是更环保的可持续发电方式之一。本项目的总体目标是在与海洋水动能转换相关的尺度上更好地了解湍流入流和尾流的时空结构。一套最先进的实验流体动力学仪器将用于湍流特性,并将使用实验室和开放水域(潮汐河口)测试设备。研究的重点是潮汐能,但研究结果也适用于海洋和河流的能量转换和波浪能。智力优势:MHK能量转换装置受到广泛的湍流尺度。例如,最快的潮汐流通常发生在复杂的水深区域,这在MHK装置的位置产生了复杂的边界层和流动扭曲。初步试验表明,MHK装置的性能以及结构疲劳和失效与湍流密切相关。在下游,由MHK装置及其支撑结构产生的湍流会对水体中的环境和生物产生影响。通常用于开放水域测量的稳健声学多普勒电流分析器(ADCPs)由于其工作原理而受到采样率低的限制,这导致与MHK设备相关的湍流尺度的空间分辨率不足。另一方面,具有较高时间和空间分辨率的实验技术通常仅限于实验室环境。在这个项目中,湍流入流和水动力涡轮尾迹将首先在一个大截面组合拖波槽中测量,比较ADCPs、多点声学多普勒测速(ADV)和水下高帧率粒子图像测速(HFR-PIV),以建立每种仪器如何测量时空流动结构的基线。然后在开放水域潮汐能试验场测量湍流流入和水动力涡轮尾迹,比较ADCP和ADV。实验室和开放水域部署的数据将用于数学建模,使用低维模型和随机估计技术来预测ADCP剖面和ADV参考测量的湍流状态。该项目将因此填补一个仪器?规模差距?这是目前存在的。更广泛的影响:该项目将提供以前无法获得的有关mhk相关流量时空结构的信息。它将提高我们对不同测量技术在MHK环境中的能力的理解,并创造通用的预测工具,这将使研究海洋环境中的其他现象和过程成为可能。这项研究的结果将实现更高保真度的资源评估和更准确的能量转换装置评估,获得以前无法获得的流固耦合流动数据,生成设备阵列布局数据,促进环境影响评估,并最终导致改进设计。它会因此帮助美国吗?成为MHK行业的成功者。研究和教育活动的整合将通过包括可再生能源和实验流体动力学的高级/研究生课程的研究,作为研究生培训,推广和继续教育的一部分的工业研究机会,以及参加大学开放日活动,实验室参观和示范来实现。外展活动将包括与NH海岸科学中心和NH儿童?年代博物馆。工程领域代表性不足的群体将通过UNH多样性办公室和学生社团积极招募,作为本科生研究人员和潜在的博士生参与拟议的研究。该项目将用于吸引对可再生能源、流量测量和湍流领域感兴趣的学生,并帮助培训推动这一新兴行业发展所需的劳动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Wosnik其他文献
Wave-powered water pump for upwelling in aquaculture: Numerical model and ocean test
- DOI:
10.1016/j.renene.2024.122040 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Chelsea Kimball;M. Robinson Swift;Martin Wosnik - 通讯作者:
Martin Wosnik
Performance of cross-flow turbines with varying blade materials and unsupported blade span
- DOI:
10.1016/j.renene.2024.121925 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Nicole Marone;Matthew Barrington;Budi Gunawan;Jarlath McEntee;Martin Wosnik - 通讯作者:
Martin Wosnik
Deep reinforcement learning-based optimization of an island energy-water microgrid system
基于深度强化学习的岛屿能源-水微电网系统优化
- DOI:
10.1016/j.resconrec.2025.108440 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:10.900
- 作者:
Roozbeh Ghasemi;Gersi Doko;Marek Petrik;Martin Wosnik;Zhongming Lu;Diane L. Foster;Weiwei Mo - 通讯作者:
Weiwei Mo
An experimental evaluation of the interplay between geometry and scale on cross-flow turbine performance
- DOI:
10.1016/j.rser.2024.114848 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Aidan Hunt;Benjamin Strom;Gregory Talpey;Hannah Ross;Isabel Scherl;Steven Brunton;Martin Wosnik;Brian Polagye - 通讯作者:
Brian Polagye
In-situ blade strain measurements and fatigue analysis of a cross-flow turbine operating in a tidal flow
- DOI:
10.1016/j.renene.2024.121977 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Mason Bichanich;Aidan Bharath;Patrick O’Byrne;Michael Monahan;Hannah Ross;Robert Raye;Casey Nichols;Charles Candon;Martin Wosnik - 通讯作者:
Martin Wosnik
Martin Wosnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Wosnik', 18)}}的其他基金
MRI: Acquisition of an Integrated High Frame-Rate Particle Image Velocimetry (HFR-PIV) System
MRI:采集集成高帧率粒子图像测速 (HFR-PIV) 系统
- 批准号:
0821608 - 财政年份:2008
- 资助金额:
$ 40.15万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Experimental and Computational Studies of Biomolecular Topology
职业:生物分子拓扑的实验和计算研究
- 批准号:
2336744 - 财政年份:2024
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant
CAREER - Winding up our crystal clocks: Experimental studies of element diffusion in igneous minerals
职业生涯 - 给我们的水晶钟上发条:火成矿物中元素扩散的实验研究
- 批准号:
2047313 - 财政年份:2021
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant
CAREER: Experimental and Theoretical Studies to Develop Complex Biomaterials
职业:开发复杂生物材料的实验和理论研究
- 批准号:
1941731 - 财政年份:2020
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant
CAREER: Experimental and Theoretical Studies of Mechanics Interacting with Electric/Optical Fields in Liquid Crystal Elastomers
职业:液晶弹性体中与电场/光场相互作用的力学实验和理论研究
- 批准号:
1554212 - 财政年份:2016
- 资助金额:
$ 40.15万 - 项目类别:
Standard Grant
CAREER: Experimental, Numerical, and Case Studies of Landslide Mobility
职业:滑坡流动性的实验、数值和案例研究
- 批准号:
1453103 - 财政年份:2015
- 资助金额:
$ 40.15万 - 项目类别:
Standard Grant
CAREER: Experimental & Computational Studies of Ancient Sm-based RNA Assemblies
职业:实验
- 批准号:
1350957 - 财政年份:2014
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant
CAREER: Experimental studies of the rheology and flow properties of liquefied biomass in wall-bounded turbulent flows
职业:壁面湍流中液化生物质的流变学和流动特性的实验研究
- 批准号:
0846359 - 财政年份:2009
- 资助金额:
$ 40.15万 - 项目类别:
Standard Grant
CAREER: Hybrid Theoretical/Experimental Studies of Metal/Metal-Oxide Interface Chemistry: The Role of Oxide Support in Au/Oxide Catalytic Activity
职业:金属/金属-氧化物界面化学的混合理论/实验研究:氧化物载体在金/氧化物催化活性中的作用
- 批准号:
0543067 - 财政年份:2006
- 资助金额:
$ 40.15万 - 项目类别:
Standard Grant
CAREER: Experimental and Theoretical Studies of Thiolate-Heme Enzymes
职业:硫醇血红素酶的实验和理论研究
- 批准号:
0347676 - 财政年份:2004
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant
CAREER: Experimental Studies of Granular Fluids
职业:颗粒流体的实验研究
- 批准号:
9874833 - 财政年份:1999
- 资助金额:
$ 40.15万 - 项目类别:
Continuing Grant














{{item.name}}会员




