CAREER: Algorithms and Software for Computational Algebraic Geometry

职业:计算代数几何的算法和软件

基本信息

  • 批准号:
    1151297
  • 负责人:
  • 金额:
    $ 47.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In this project the PI will develop symbolic, numerical, and hybrid methods in computational algebraic geometry and implement the resulting algorithms. He expects to advance both heuristic and certified methods in numerical algebraic geometry aimed at solving systems of polynomial equations and extracting exact geometric invariants and combinatorial information from algebraic varieties via approximate numerical methods. The proposed research includes certification of results obtained with numerical homotopy continuation, applications to tropical geometry and Schubert calculus, as well as the development of the numerical algebraic geometry engine of Macaulay2. The proposed multi-level educational program includes a new undergraduate course in algebraic computation, a graduate topics course, and a graduate summer program. Polynomial systems are ubiquitous in mathematical models in science and engineering. As engineering community opens up to algebraic methods, applied algebraic geometry is bound to make impact on a multitude of areas. The software produced in this research project will help scientists and engineers confronted with problems algebraic in nature. Certification in homotopy tracking algorithms will bring absolute assurance of the correctness of computation valuable to practitioners and provide a status of proof to the results obtained with homotopy methods important to theoreticians. The educational part of the project will promote algebraic computation in Georgia Tech within and outside the School of Mathematics and is perfectly suited for a large engineering school with a diverse student body.
在这个项目中,PI将在计算代数几何中开发符号、数值和混合方法,并实现所产生的算法。他希望在数值代数几何中发展启发式和认证方法,目标是求解多项式方程组,并通过近似数值方法从代数变体中提取精确的几何不变量和组合信息。提出的研究包括验证数值同伦延拓的结果,应用于热带几何和Schubert微积分,以及开发Macaulay2的数值代数几何引擎。拟议的多层次教育计划包括一门新的代数计算本科课程、一门研究生专题课程和一项研究生暑期课程。在科学和工程的数学模型中,多项式系统是普遍存在的。随着工程界对代数方法的开放,应用代数几何必然会对许多领域产生影响。本研究项目制作的软件将帮助科学家和工程师解决自然界中的代数问题。同伦跟踪算法的验证将绝对保证计算的正确性,对实践者有价值,并为同伦方法得到的结果提供一种证明状态,对于理论界来说很重要。该项目的教育部分将在佐治亚理工学院数学学院内外推广代数计算,非常适合学生群体多样化的大型工程学校。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Leykin其他文献

Local dual spaces and primary decomposition
局部对偶空间和初级分解
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Chen;Marc Harkonen;Anton Leykin
  • 通讯作者:
    Anton Leykin

Anton Leykin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Leykin', 18)}}的其他基金

Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
  • 批准号:
    2001267
  • 财政年份:
    2020
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
Polynomial Homotopy Continuation: Under the Hood
多项式同伦延拓:幕后黑手
  • 批准号:
    1719968
  • 财政年份:
    2017
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
Algebraic Geometry for Applications
代数几何的应用
  • 批准号:
    1201654
  • 财政年份:
    2012
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
  • 批准号:
    2238831
  • 财政年份:
    2023
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
  • 批准号:
    DGECR-2022-00405
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Discovery Launch Supplement
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
  • 批准号:
    RGPIN-2022-04609
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Discovery Grants Program - Individual
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
  • 批准号:
    576162-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Alliance Grants
Quantum Software and Algorithms
量子软件和算法
  • 批准号:
    CRC-2021-00206
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Canada Research Chairs
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 47.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了