Polynomial Homotopy Continuation: Under the Hood
多项式同伦延拓:幕后黑手
基本信息
- 批准号:1719968
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems of polynomial equations are ubiquitous in mathematical models in science and engineering. The field of algebraic geometry, which studies solutions to such systems, has the potential to improve techniques for practical numerical investigations of these systems. This research project aims to apply algebraic geometry to advance numerical algorithms for solving systems of polynomial equations. The research includes developing new homotopy continuation methods that exploit the action of the monodromy group, random walk homotopies, and hybrid algorithms for solving sparse systems. The new theoretical framework and algorithms will be implemented in open-source software. Homotopy continuation algorithms are a backbone of modern nonlinear algebra, the art of solving systems of equations that are not necessarily linear. The main strength of these algorithms is in approximate computation, which often is much faster than classical exact techniques and allows tackling problems in high-dimensional spaces. Homotopy continuation methods solve a problem A in three steps: (1) look for a problem B in the same family of problems as A, but with a simpler structure; (2) construct solutions to that simpler problem B; (3) connect A and B with a homotopy, that is, a continuous deformation, and track how solutions of B morph into solutions of A. This project aims to develop a novel framework for basic homotopy continuation routines. One major point is that randomizing numerical algorithms to a greater extent makes them even faster and more robust without a costly increase in computational precision. Another point is that, looking to minimize computational costs, we should invent new hybrid methods intertwining exact and approximate techniques originating in different areas of mathematics. The symbiosis of symbolic, combinatorial, and numerical ideas is the key to the new methods for solving sparse systems. Tools from tropical geometry and numerical algebraic geometry will deliver a generalization of polyhedral homotopy algorithms and lead to a faster polynomial system solver that benefits from a tighter solution count.
在科学和工程的数学模型中,多项式方程组是普遍存在的。研究此类系统的解的代数几何领域具有改进这些系统的实际数值研究的技术的潜力。这项研究项目旨在应用代数几何来改进求解多项式方程组的数值算法。研究包括开发新的同伦延拓方法,利用单调群的作用,随机游走同伦,以及求解稀疏系统的混合算法。新的理论框架和算法将在开源软件中实现。同伦延拓算法是现代非线性代数的支柱,是求解不一定是线性的方程系统的艺术。这些算法的主要优势在于近似计算,它通常比经典的精确技术快得多,并允许在高维空间中处理问题。同伦延拓方法通过三个步骤解决问题A:(1)在与A相同的问题族中寻找一个结构更简单的问题B;(2)构造更简单的问题B的解;(3)用一个同伦,即连续变形来连接A和B,并跟踪B的解是如何变成A的解的。本项目旨在开发一个新的基本同伦延拓例程的框架。主要的一点是,在更大程度上随机化数值算法会使它们更快、更健壮,而不会代价高昂地提高计算精度。另一点是,为了最小化计算成本,我们应该发明新的混合方法,将源自不同数学领域的精确和近似技术相互交织在一起。符号、组合和数值思想的共生是解决稀疏系统的新方法的关键。热带几何和数值代数几何的工具将提供多面体同伦算法的泛化,并导致更快的多项式系统解算器,受益于更紧密的解计数。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monodromy Solver: Sequential and Parallel
单向求解器:顺序和并行
- DOI:10.1145/3208976.3209007
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Bliss, Nathan;Duff, Timothy;Leykin, Anton;Sommars, Jeff
- 通讯作者:Sommars, Jeff
Effective Certification of Approximate Solutions to Systems of Equations Involving Analytic Functions
涉及解析函数的方程组近似解的有效证明
- DOI:10.1145/3326229.3326235
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Burr, Michael;Lee, Kisun;Leykin, Anton
- 通讯作者:Leykin, Anton
A numerical toolkit for multiprojective varieties
多射影簇数值工具包
- DOI:10.1090/mcom/3566
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Hauenstein, Jonathan;Leykin, Anton;Rodriguez, Jose;Sottile, Frank
- 通讯作者:Sottile, Frank
Certification for polynomial systems via square subsystems
通过平方子系统认证多项式系统
- DOI:10.1016/j.jsc.2020.07.010
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Duff, Timothy;Hein, Nickolas;Sottile, Frank
- 通讯作者:Sottile, Frank
TRPLP – Trifocal Relative Pose From Lines at Points
- DOI:10.1109/cvpr42600.2020.01209
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:R. Fabbri;Timothy Duff;Hongyi Fan;Margaret H. Regan;David da Costa de Pinho;Elias P. Tsigaridas;C. Wam
- 通讯作者:R. Fabbri;Timothy Duff;Hongyi Fan;Margaret H. Regan;David da Costa de Pinho;Elias P. Tsigaridas;C. Wam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Leykin其他文献
Local dual spaces and primary decomposition
局部对偶空间和初级分解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin Chen;Marc Harkonen;Anton Leykin - 通讯作者:
Anton Leykin
Anton Leykin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Leykin', 18)}}的其他基金
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
- 批准号:
2001267 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Algorithms and Software for Computational Algebraic Geometry
职业:计算代数几何的算法和软件
- 批准号:
1151297 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Computations and applications of Seiberg-Witten Floer stable homotopy type
Seiberg-Witten Floer稳定同伦型的计算与应用
- 批准号:
23K03115 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
- 批准号:
EP/X038424/1 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Research Grant