EAGER: Approximate Inference Robust Speech Processing via Sampling
EAGER:通过采样进行近似推理鲁棒语音处理
基本信息
- 批准号:1152288
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Speech enhancement and speaker recognition are, in principle, related tasks. Knowledge of the speaker can allow for better speech enhancement, while speech with less interference improves the ability to recognize the speaker. Statistical models for these two tasks can be coupled to yield a principled approach to performing both jointly, however the complexity of exact inference in the resulting statistical model, which must straddle a nonlinear feature calculation, is prohibitive. For this reason, approximate inference techniques that sacrifice some performance of exact inference for lower complexity are of interest. This Early Grant for Exploratory Research brings Gibbs sampling approximate inference techniques to bear on joint speech enhancement and speaker recognition for the sake of comparison with several variational approximate inference techniques. The ultimate aim of the research is to partition the attainable complexity and performance space into different regimes dictating which techniques should be used and the performance attainable as a function of complexity. To obtain this partitioning, a thorough empirical evaluation on several large speech corpora will be carried out.Speech enhancement and speaker recognition technology finds multiple uses in defense, commercial, and medical technologies. Multiple technologies would benefit from performance improvement in speech enhancement and speaker recognition brought about by successfully integrating these two interdependent tasks. Potential applications include dialogue systems for controlling e.g. television sets using distant microphones where additive noise is a significant source of distortion. Additionally, speech enhancement is useful for hearing aids. Speaker dependent prior information gains the ability to improve the intelligibility of speech in these devises.
语音增强和说话人识别原则上是相关的任务。 说话者的知识可以允许更好的语音增强,而具有较少干扰的语音提高了识别说话者的能力。 这两个任务的统计模型可以耦合以产生联合执行两者的原则性方法,然而,在所得到的统计模型中精确推断的复杂性(其必须跨越非线性特征计算)是禁止的。 出于这个原因,近似推理技术,牺牲一些性能的精确推理较低的复杂性是感兴趣的。 这个探索性研究的早期补助金带来了吉布斯采样近似推理技术,以承担联合语音增强和说话人识别的比较与几个变分近似推理技术。 研究的最终目的是将可达到的复杂度和性能空间划分为不同的区域,从而决定应该使用哪些技术以及可达到的性能作为复杂度的函数。 为了获得这种划分,将对几个大型语音语料库进行彻底的实证评估。语音增强和说话人识别技术在国防、商业和医疗技术中有着广泛的用途。 通过成功整合语音增强和说话人识别这两项相互依赖的任务,多种技术将受益于这两项任务的性能改善。潜在的应用包括用于控制例如使用远距离麦克风的电视机的对话系统,其中加性噪声是显著的失真源。 此外,语音增强对于助听器是有用的。在这些装置中,说话人相关的先验信息获得了提高语音可懂度的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Walsh其他文献
Collaborat ion and commercraliaing academic science : Findings lron a US author survey
学术科学的合作与商业化:美国作者调查的结果
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Aruka;Y.;Akiyama;E.;只野雅人;栗田和明;金淑賢;John Walsh - 通讯作者:
John Walsh
The Church, the societies and the moral revolution of 1688
教会、社会和 1688 年的道德革命
- DOI:
10.1017/cbo9780511560897.006 - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
J. Spurr;John Walsh;C. Haydon;Stephen Taylor - 通讯作者:
Stephen Taylor
Help! Someone Is Beeping . . .
帮助!
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5
- 作者:
Ruth Roberts;John Walsh;L. Heinemann - 通讯作者:
L. Heinemann
HIV-1 Vpr activates the NLRP3 inflammasome in primary human microglia
- DOI:
10.1016/j.jneuroim.2014.08.434 - 发表时间:
2014-10-15 - 期刊:
- 影响因子:
- 作者:
Manmeet Mamik;Jesse Chisholm;Brienne Mckenzie;John Walsh;Christopher Power - 通讯作者:
Christopher Power
Pricing rules in a mixed economy: an expanded example
- DOI:
10.1007/bf02300193 - 发表时间:
1982-12-01 - 期刊:
- 影响因子:0.800
- 作者:
John Walsh - 通讯作者:
John Walsh
John Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Walsh', 18)}}的其他基金
'Horticulture' CRISPR Cas-mediated and inter-species transfer of broad-spectrum, potentially durable disease resistance in crop plants (CRIMIST-DR).
“园艺”作物中 CRISPR Cas 介导的广谱、潜在持久抗病性的种间转移 (CRIMIST-DR)。
- 批准号:
BB/X011798/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Belmont Forum Collaborative Research: Assessment Framework for Successful Development of Viable Ocean Multi-use Systems (Multi-Frame)
贝尔蒙特论坛合作研究:成功开发可行海洋多用途系统的评估框架(多框架)
- 批准号:
2022355 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Delivering important virus resistance
提供重要的病毒抵抗力
- 批准号:
BB/T004193/1 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Arctic evapotranspiration: A diagnostic synthesis and model assessment
北极蒸散量:诊断综合和模型评估
- 批准号:
1830131 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Examining Seafloor Dynamics offshore Bogue Banks, North Carolina, Related to Hurricane Florence
RAPID:检查北卡罗来纳州博格班克斯近海与佛罗伦萨飓风相关的海底动力学
- 批准号:
1906073 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CIF:Small: A Computationally-Enabled Rate Region Theory via Symmetry and Hierarchy
CIF:Small:通过对称性和层次结构计算的费率区域理论
- 批准号:
1812965 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Patent Policy Changes in the Court: A study of Heterogeneous Impacts on Business Models and Firms' Participation
博士论文研究:法院的专利政策变化:对商业模式和企业参与的异质性影响研究
- 批准号:
1759991 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Structural Characteristics and the Pace of Scientific Advance
EAGER:合作研究:结构特征和科学进步的步伐
- 批准号:
1646459 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the role of Arctic cyclones - A system approach
合作研究:了解北极气旋的作用 - 系统方法
- 批准号:
1602720 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Refining survey-based measures of innovation
EAGER:协作研究:完善基于调查的创新衡量标准
- 批准号:
1646689 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
- 批准号:
EP/X022595/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
- 批准号:
EP/X024881/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
RI: Small: Approximate Inference for Planning and Reinforcement Learning
RI:小:规划和强化学习的近似推理
- 批准号:
2246261 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Approximate Inference for Latent Position Models
潜在位置模型的近似推理
- 批准号:
RGPIN-2022-03012 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Approximate inference at the intersection of neuroscience and machine learning
职业:神经科学和机器学习交叉点的近似推理
- 批准号:
2143440 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
- 批准号:
21J11859 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Approximate Bayesian Inference by Density Ratio Estimation
通过密度比估计进行近似贝叶斯推理
- 批准号:
2437825 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Studentship
Approximate Manifold Sampling Robust Bayesian Inference for Machine Learning
用于机器学习的近似流形采样鲁棒贝叶斯推理
- 批准号:
2277956 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Studentship
Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods
使用泊松近似似然对流行病区室模型进行一致且快速的推断
- 批准号:
2266490 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Studentship