Deterministic and Stochastic Equilibrium Selection in Evolutionary Game Theory

进化博弈论中的确定性和随机均衡选择

基本信息

  • 批准号:
    1155135
  • 负责人:
  • 金额:
    $ 27.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

This award funds research pursuing two new directions for equilibrium selection in evolutionary game theory. The first part of the project introduces models of equilibrium selection under deterministic dynamics, and the second considers equilibrium selection via stochastic stability.The PI and his co-authors first introduce a new class of deterministic evolutionary game dynamics called sampling best response dynamics. To define them, they assume that when an agent considers switching actions, he observes the actions of a fixed or random number of randomly sampled opponents. He views the empirical distribution of actions in his sample as an estimate of the distribution of actions in the population, and chooses an action that is optimal against this empirical distribution. The team shows that in certain games with multiple strict equilibria, there is one equilibrium that is almost globally asymptotically stable, attracting solutions from all interior initial conditions. Since the analysis is deterministic, the predictions they obtain require little time to pass to become relevant. The team also investigates the extent to which deterministic selection results can be obtained for dynamics derived from other revision rules.The second part of the project considers stochastic stability in models of evolution based on noisy best response rules. In models of best responses with mutations, in which the probability of a suboptimal choice is independent of its payoff consequences, stochastic stability analysis can proceed using mutation counting arguments. But when the probability of a suboptimal choice depends on its payoff consequences, the probability of following a given path between equilibria depends on both the number of steps and the unlikelihood of each step. Because of this, little is known about equilibrium selection beyond two-strategy games. The researchers argue that by studying stochastic stability in double limits, having both the level of noise in agents? decisions become small and the population size become large, one can combine techniques from large deviations theory and optimal control theory to evaluate the probabilities of transitions between equilibria, and so determine the stochastically stable states. They also argue that the asymptotic properties of the stationary distribution, and hence the identity of the stochastically stable states, is independent of the order of limits chosen. This analysis would extend simpler existing results for two-strategy games to games with arbitrary numbers of strategies.Broader ImpactsIn environments with large numbers of interacting agents, including settings with multilateral externalities and macroeconomic contexts, the existence of multiple equilibria can lead to inefficiency and to an inability to predict behavior. By developing dynamic models of decision that lead to unique predictions in these settings, the PI provides tools that could help planners attain social goals through the careful crafting of incentives and information-provision policies. The research includes a component that develops technology and instructional materials for research and teaching in game theory: a suite of easy-to-use, open source software for constructing phase diagrams and other graphics related to evolutionary game dynamics. Thiscomponent of the proposal has made evolutionary game techniques more accessible to theoretical and applied workers in economics, biology, engineering, and other fields, and continued development of the project will further its utility and scope.
该奖项资助了在进化博弈论中寻求均衡选择的两个新方向的研究。该项目的第一部分介绍了确定性动态下的均衡选择模型,第二部分考虑了通过随机稳定性进行均衡选择。PI和他的合著者首先介绍了一类新的确定性进化博弈动态,称为采样最佳响应动态。为了定义它们,他们假设当一个代理考虑切换动作时,他观察到一个固定或随机数量的随机抽样对手的动作。他将样本中行动的经验分布视为对总体中行动分布的估计,并选择针对该经验分布的最佳行动。该团队表明,在某些具有多个严格均衡的游戏中,有一个均衡几乎是全局渐近稳定的,吸引来自所有内部初始条件的解。 由于分析是确定性的,他们获得的预测几乎不需要时间就可以变得相关。 该小组还调查了在何种程度上可以获得确定性的选择结果的动态来自其他revisionrules.The项目的第二部分认为随机稳定性的基础上,嘈杂的最佳反应规则的演变模型。在具有突变的最佳对策模型中,次优选择的概率与其收益结果无关,随机稳定性分析可以使用突变计数参数进行。但是,当一个次优选择的概率取决于它的收益结果时,在均衡之间遵循给定路径的概率取决于步骤的数量和每一步的不可能性。正因为如此,人们对双策略博弈之外的均衡选择知之甚少。研究人员认为,通过研究双重限制的随机稳定性,既有代理人的噪音水平?决策变小,种群规模变大,人们可以将大偏差理论和最优控制理论的联合收割机技术结合起来,以评估平衡点之间的转移概率,从而确定随机稳定状态。 他们还认为,渐近性质的平稳分布,因此身份的随机稳定状态,是独立的顺序选择的限制。这种分析将扩展简单的现有结果为两个策略的游戏与任意数量的strategy.Broader ImpactsIn环境中有大量的相互作用的代理人,包括设置与多边外部性和宏观经济背景下,多重均衡的存在可能会导致效率低下,无法预测的行为。通过开发动态决策模型,在这些环境中产生独特的预测,PI提供了工具,可以帮助规划者通过精心设计的激励措施和信息提供政策来实现社会目标。该研究包括一个为博弈论的研究和教学开发技术和教学材料的组件:一套易于使用的开源软件,用于构建相图和其他与进化博弈动力学相关的图形。该提案的这一组成部分使进化博弈技术更容易为经济学、生物学、工程学和其他领域的理论和应用工作者所接受,该项目的继续发展将进一步扩大其效用和范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Sandholm其他文献

William Sandholm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Sandholm', 18)}}的其他基金

Best Experienced Payoff Dynamics and Cooperative Play in Extensive Form Games
广泛形式游戏中最有经验的支付动态和合作游戏
  • 批准号:
    1728853
  • 财政年份:
    2017
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Equilibrium Breakdown and Equilibrium Selection in Evolutionary Game Theory
演化博弈论中的均衡崩溃与均衡选择
  • 批准号:
    1458992
  • 财政年份:
    2015
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Evolutionary Game Theory and Applications
进化博弈论及其应用
  • 批准号:
    0851580
  • 财政年份:
    2009
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
Rationality, Irrationality, and Transition Dynamics in Evolutionary Game Theory
进化博弈论中的理性、非理性和过渡动力学
  • 批准号:
    0617753
  • 财政年份:
    2006
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant
CAREER: Evolution in Games: Theory and Applications
职业:游戏的演变:理论与应用
  • 批准号:
    0092145
  • 财政年份:
    2001
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
A stochastic relaxation of the quasi-equilibrium assumption of tropical convection
热带对流准平衡假设的随机松弛
  • 批准号:
    569908-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Identification and Estimation of Dynamic Stochastic General Equilibrium Models: Skewness Matters
动态随机一般均衡模型的识别和估计:偏度很重要
  • 批准号:
    411754673
  • 财政年份:
    2019
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Research Grants
Stochastic Relaxation for Quasi-Equilibrium Theory of Organized Tropical Convection
有组织热带对流准平衡理论的随机弛豫
  • 批准号:
    538942-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 27.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Systems of Backward Stochastic Differential Equations and Applications in Stochastic Financial Equilibrium Theory
后向随机微分方程组及其在随机金融均衡理论中的应用
  • 批准号:
    1815017
  • 财政年份:
    2018
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Risk and Reliability in Stochastic Optimisation and Equilibrium
随机优化和均衡中的风险和可靠性
  • 批准号:
    DP160102819
  • 财政年份:
    2016
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Discovery Projects
Stochastic phase space methods for non-equilibrium systems
非平衡系统的随机相空间方法
  • 批准号:
    1814201
  • 财政年份:
    2016
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Studentship
Error-Correction Reinterpretation and Efficient Estimation of Dynamic Stochastic General Equilibrium Models
动态随机一般均衡模型的误差修正重新解释和有效估计
  • 批准号:
    1529151
  • 财政年份:
    2016
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Standard Grant
Continuous-Time Modeling of Dynamic, Stochastic Equilibrium Models - Theory and Applications
动态随机平衡模型的连续时间建模 - 理论与应用
  • 批准号:
    268475812
  • 财政年份:
    2015
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Research Grants
Stochastic mathematical programs with equilibrium constraints
具有平衡约束的随机数学程序
  • 批准号:
    311631-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了