Systems of Backward Stochastic Differential Equations and Applications in Stochastic Financial Equilibrium Theory

后向随机微分方程组及其在随机金融均衡理论中的应用

基本信息

  • 批准号:
    1815017
  • 负责人:
  • 金额:
    $ 37.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Why do stock-price graphs look the way they do? Why do market crashes and rallies occur? How much do asset prices depend on our risk appetites, and how much on the inherent randomness of the world around us? These questions can be answered by analyzing various mathematical models based on the fundamental idea that prices adjust to equalize supply with demand. This analysis is often very hard, and requires considerable analytical effort, but is nevertheless within the reach of contemporary mathematics and its tools. The societal benefits of a better understanding of the structure behind asset-price movements are numerous; for instance, it will help us regulate the markets more efficiently and plan better for potential future financial instabilities. The principal investigator and his students and collaborators will study several separate, but ultimately related, clusters of problems at the intersection of probability, mathematical finance and stochastic-control theory. One area of concentration is the class of equations, known as Backward Stochastic Differential Equations (BSDEs), which describe evolutions of random processes in many different contexts. The PI and his collaborators will focus on the existence and uniqueness theory for systems of nonlinear fully-coupled BSDEs. While their interest in this subject originates in its pivotal role in the financial equilibrium theory, there are numerous other applications in finance, economics, game theory, optimal stochastic control, and other fields. The second cluster of problems centers around the so-called mean-field limits in the context of equilibrium theory. The main goal here is to provide a meaningful simplification of the equilibrium problem when the market consists of a large number of small economic agents. Attention will be paid to the limiting behavior of the systems of BSDEs which appear in incomplete-market equilibrium models with exponential investors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为什么股价图表会是这样的呢?为什么会出现市场崩盘和反弹?资产价格在多大程度上取决于我们的风险偏好,在多大程度上取决于我们周围世界固有的随机性?这些问题可以通过分析各种数学模型来回答,这些模型基于价格调整的基本思想,即供需平衡。这种分析通常是非常困难的,需要相当大的分析努力,但仍然在当代数学及其工具的能力范围内。更好地了解资产价格变动背后的结构有很多社会好处;例如,它将帮助我们更有效地监管市场,并更好地为未来潜在的金融不稳定制定计划。主要研究人员和他的学生及合作者将研究概率、数学金融和随机控制理论交集的几个独立但最终相关的问题群。一个集中的领域是一类方程,称为倒向随机微分方程(BSDE),它描述了随机过程在许多不同环境中的演变。PI和他的合作者将专注于非线性全耦合BSDE系统的存在唯一性理论。虽然他们对这门学科的兴趣源于它在金融均衡理论中的关键作用,但它在金融、经济学、博弈论、最优随机控制等领域还有许多其他应用。在均衡理论的背景下,第二组问题围绕着所谓的平均场极限。这里的主要目标是,当市场由大量小型经济主体组成时,对均衡问题提供一个有意义的简化。这一奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An incomplete equilibrium with a stochastic annuity
随机年金的不完全均衡
  • DOI:
    10.1007/s00780-020-00415-6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Weston, Kim;Žitković, Gordan
  • 通讯作者:
    Žitković, Gordan
A characterization of solutions of quadratic BSDEs and a new approach to existence
A Framework for the Dynamic Programming Principle and Martingale-Generated Control Correspondences
动态规划原理和鞅生成的控制对应关系的框架
  • DOI:
    10.1007/s00245-019-09589-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Fayvisovich, Roman;Žitković, Gordan
  • 通讯作者:
    Žitković, Gordan
Conditional Davis pricing
有条件戴维斯定价
  • DOI:
    10.1007/s00780-020-00424-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Larsen, Kasper;Soner, Halil Mete;Žitković, Gordan
  • 通讯作者:
    Žitković, Gordan
Existence and Uniqueness for Non-Markovian Triangular Quadratic BSDEs
非马尔可夫三角二次倒向随机微分方程的存在唯一性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gordan Zitkovic其他文献

J un 2 00 7 Optimal Investment with an Unbounded Random Endowment and Utility-Based Pricing Methods
Jun 2 00 7 无界随机禀赋和基于效用的定价方法的最优投资
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Owen;Gordan Zitkovic
  • 通讯作者:
    Gordan Zitkovic
Financial equilibria in the semimartingale setting: Complete markets and markets with withdrawal constraints
半鞅设定下的金融均衡:完全市场和有撤回限制的市场
  • DOI:
    10.1007/s00780-005-0175-6
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gordan Zitkovic
  • 通讯作者:
    Gordan Zitkovic
ON AGENT’S AGREEMENT AND PARTIAL‐EQUILIBRIUM PRICING IN INCOMPLETE MARKETS
不完全市场下的代理协议与部分均衡定价
  • DOI:
    10.1111/j.1467-9965.2010.00405.x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Michail Anthropelos;Gordan Zitkovic
  • 通讯作者:
    Gordan Zitkovic
Convex compactness and its applications
Dynamic Programming for Controlled Markov Families: Abstractly and over Martingale Measures
  • DOI:
    10.1137/130926481
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gordan Zitkovic
  • 通讯作者:
    Gordan Zitkovic

Gordan Zitkovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gordan Zitkovic', 18)}}的其他基金

Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
  • 批准号:
    2307729
  • 财政年份:
    2023
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
Stochastic Equilibria and Related Topics in Financial Mathematics
随机均衡及金融数学中的相关主题
  • 批准号:
    1516165
  • 财政年份:
    2015
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
CAREER: Equilibria and Stability in Financial Markets
职业:金融市场的均衡与稳定
  • 批准号:
    0955614
  • 财政年份:
    2010
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Continuing Grant
AMC-SS: Stochastic Modeling and Methods in Financial Equilibrium Theory
AMC-SS:金融均衡理论中的随机建模和方法
  • 批准号:
    0706947
  • 财政年份:
    2007
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Banach空间中Forward-Backward分裂法研究
  • 批准号:
    11901171
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Forward-Looking与Backward-Looking相结合的投资组合管理
  • 批准号:
    71471180
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    RGPIN-2018-04325
  • 财政年份:
    2022
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Grants Program - Individual
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    RGPIN-2018-04325
  • 财政年份:
    2021
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Grants Program - Individual
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    RGPIN-2018-04325
  • 财政年份:
    2020
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Grants Program - Individual
Study on Applications of Backward Stochastic Differential Equations
倒向随机微分方程的应用研究
  • 批准号:
    19K03636
  • 财政年份:
    2019
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    RGPIN-2018-04325
  • 财政年份:
    2019
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Grants Program - Individual
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    DGECR-2018-00363
  • 财政年份:
    2018
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Launch Supplement
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
  • 批准号:
    RGPIN-2018-04325
  • 财政年份:
    2018
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Discovery Grants Program - Individual
On numerical approximations of high-dimensional nonlinear parabolic partial differential equations and of backward stochastic differential equations
高维非线性抛物型偏微分方程和倒向随机微分方程的数值逼近
  • 批准号:
    381158774
  • 财政年份:
    2017
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Research Grants
Backward stochastic differential equation and nonlinear stochastic integration
后向随机微分方程和非线性随机积分
  • 批准号:
    17K05297
  • 财政年份:
    2017
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Learning Optimal Control Using Forward Backward Stochastic Differential Equations
使用前向后向随机微分方程学习最优控制
  • 批准号:
    1662523
  • 财政年份:
    2017
  • 资助金额:
    $ 37.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了