Bayesian Multivariate Analysis for Causal Inference with Intermediate Variables
使用中间变量进行因果推理的贝叶斯多元分析
基本信息
- 批准号:1155697
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Across a wide range of academic disciplines, government agencies, and business sectors, drawing inferences about causal effects of treatments, intervention, and actions is central to decision making. In both randomized experiments and observational studies, it is increasingly common that treatment comparisons need to be adjusted for confounded intermediate variables; i.e., post-treatment variables potentially affected by the treatment and also affecting the response. Multivariate information is routinely collected in real-world applications involving intermediate variables, but it is infrequently and ineffectively used in causal inference. This research project will develop general purpose statistical methods and software for such multivariate analysis under the principal stratification framework within the Rubin Causal Model. A core methodological focus will be to develop cutting-edge Bayesian models, methods, and computation for flexible multivariate analysis, latent structure, nonparametric analysis, model selection, and factor analysis for drawing valid causal inferences in the presence of intermediate variables. In particular, this project will develop Bayesian parametric, semi-parametric, and non-parametric bivariate models that exploit multiple outcomes of different types to improve the estimation of weakly identified causal estimands in studies with binary or continuous intermediate variables. A Bayesian factor model also will be developed for causal studies with multiple intermediate variables. This project will improve statistical analyses for causal inference with intermediate variables, hence enabling more accurate conclusions from experimental and observational intervention studies across many disciplines. The research will blend theory and methodological developments with motivating applications in areas including health policy, epidemiology, social sciences, and economics. The open source R/Matlab software developed from the research will provide valuable data analysis and educational tools for the scientific community.
在广泛的学科、政府机构和商业部门中,对治疗、干预和行动的因果效应进行推断是决策的核心。 在随机实验和观察性研究中,越来越常见的是,需要针对混杂的中间变量调整治疗比较;即,治疗后变量可能受到治疗的影响,也会影响反应。 在涉及中间变量的现实应用中通常会收集多变量信息,但在因果推理中很少且无效地使用。 该研究项目将开发通用统计方法和软件,用于在鲁宾因果模型的主要分层框架下进行此类多元分析。 核心方法论重点将是开发尖端的贝叶斯模型、方法和计算,用于灵活的多元分析、潜在结构、非参数分析、模型选择和因子分析,以便在存在中间变量的情况下得出有效的因果推论。 特别是,该项目将开发贝叶斯参数、半参数和非参数双变量模型,利用不同类型的多个结果来改进二元或连续中间变量研究中弱识别因果估计值的估计。 还将开发贝叶斯因子模型,用于具有多个中间变量的因果研究。该项目将改进中间变量因果推断的统计分析,从而使跨多个学科的实验和观察干预研究得出更准确的结论。 该研究将理论和方法的发展与卫生政策、流行病学、社会科学和经济学等领域的应用相结合。该研究开发的开源 R/Matlab 软件将为科学界提供有价值的数据分析和教育工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan Li其他文献
Tip air injection to extend stall margin of multi-stage axial flow compressor with inlet radial distortion
尖端空气喷射可延长具有入口径向畸变的多级轴流压气机的失速裕度
- DOI:
10.1016/j.ast.2019.105554 - 发表时间:
2020 - 期刊:
- 影响因子:5.6
- 作者:
Jichao Li;Juan Du;Shaojuan Geng;Fan Li;Hongwu Zhang - 通讯作者:
Hongwu Zhang
The effect and mechanism of excessive iodine on the endothelial function of human umbilical vein endothelial cells
过量碘对人脐静脉内皮细胞内皮功能的影响及机制
- DOI:
10.1002/tox.23671 - 发表时间:
2022-09 - 期刊:
- 影响因子:0
- 作者:
D;an Wang;Peng Li;Lixiang Liu;Peng Liu;Zheng Zhou;Meihui Jin;Baoxiang Li;Fan Li;Yao Chen;Hongmei Shen - 通讯作者:
Hongmei Shen
Biodegradation of poly(epsilon-caprolactone) (PCL) by a new Penicillium oxalicum strain DSYD05-1
草酸青霉新菌株 DSYD05-1 对聚(ε-己内酯)(PCL)的生物降解
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.1
- 作者:
Fan Li;Dan Yu;Xiumei Lin;Dongbo Liu;Hongmei Xia;Shan Chen - 通讯作者:
Shan Chen
HDSpeed: Hybrid Detection of Vehicle Speed via Acoustic Sensing on Smartphone
HDSpeed:通过智能手机上的声学传感混合检测车速
- DOI:
10.1109/tmc.2020.3048380 - 发表时间:
- 期刊:
- 影响因子:7.9
- 作者:
Yue Wu;Fan Li;Yadong Xie;Song Yang;Yu Wang - 通讯作者:
Yu Wang
On the mixed-model analysis of covariance in cluster-randomized trials
整群随机试验中协方差的混合模型分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Bingkai Wang;M. Harhay;Jiaqi Tong;Dylan S. Small;T. Morris;Fan Li - 通讯作者:
Fan Li
Fan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan Li', 18)}}的其他基金
New Weighting Methods for Causal Inference
因果推理的新加权方法
- 批准号:
1424688 - 财政年份:2014
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
- 批准号:
1208983 - 财政年份:2012
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似海外基金
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Copula-Based Methods for Multivariate Survival Analysis
基于 Copula 的多元生存分析方法
- 批准号:
2210481 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Exploring the Impacts of Gas Accretion and Environment via Multivariate (Spatial) Analysis of Metals, Star formation, and Morphology of Nearby Subaru HSC Galaxies
通过对附近 Subaru HSC 星系的金属、恒星形成和形态进行多元(空间)分析,探索气体吸积和环境的影响
- 批准号:
22K14072 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust framework for cluster analysis of multivariate discrete data
多元离散数据聚类分析的稳健框架
- 批准号:
573564-2022 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
University Undergraduate Student Research Awards
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
- 批准号:
RGPIN-2016-05880 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




