Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
基本信息
- 批准号:1208983
- 负责人:
- 金额:$ 7.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of two components, each motivated by the inference problem for functional magnetic resonance imaging (fMRI) data. In the first part, within the framework of generalized functional linear model (GFLM), a flexible semi-parametric model for neural hemodynamic response in the form of slope functions is introduced. To accommodate the variation of brain activity across different regions, stimulus types, and subjects, the new approach assumes the slope functions share the same but unknown functional shape for a given region and stimulus, while having subject-specific height, time to peak, and width. Several fast algorithms based on B-spline smoothing are proposed to estimate the model parameters for whole-brain analysis. The second part of the research focuses on building a novel Bayesian variable selection framework to study the relationship between individual traits and brain activity. The spline estimates of the brain hemodynamic responses from the first part are taken as predictors in a regression model where the response is the individual traits. Two types of priors are introduced jointly to achieve simultaneous variable selection and clustering.FMRI is one of the most effective neuroimaging technologies for understanding brain activity. In recent years, fMRI data collected from complex studies with multiple subjects have been widely used in psychological and medical research. This project will provide tools for modeling, analysis and computation for this type of fMRI data. Project findings will advance basic understanding of the inter-relations between nature and nurture in shaping individual differences in brain function and behavior, and suggest new directions for interdisciplinary research that combines statistics, neuroscience and psychology. The open source R/Matlab software developed from the research will provide valuable data analysis and educational tools for the scientific community.
该项目由两个部分组成,每个部分都是由功能磁共振成像 (fMRI) 数据的推理问题推动的。第一部分,在广义函数线性模型(GFLM)的框架内,介绍了一种灵活的斜率函数形式的神经血流动力学响应半参数模型。为了适应不同区域、刺激类型和受试者之间大脑活动的变化,新方法假设斜率函数对于给定区域和刺激具有相同但未知的功能形状,同时具有受试者特定的高度、达到峰值的时间和宽度。 提出了几种基于 B 样条平滑的快速算法来估计全脑分析的模型参数。研究的第二部分重点是构建一个新颖的贝叶斯变量选择框架来研究个体特征与大脑活动之间的关系。第一部分的大脑血流动力学响应的样条估计被视为回归模型中的预测因子,其中响应是个体特征。联合引入两种类型的先验以实现同时变量选择和聚类。FMRI 是了解大脑活动最有效的神经成像技术之一。近年来,从多个受试者的复杂研究中收集的功能磁共振成像数据已广泛应用于心理学和医学研究。该项目将为此类功能磁共振成像数据提供建模、分析和计算工具。项目研究结果将促进对先天与后天之间相互关系在塑造大脑功能和行为个体差异方面的基本理解,并为结合统计学、神经科学和心理学的跨学科研究提出新方向。该研究开发的开源 R/Matlab 软件将为科学界提供有价值的数据分析和教育工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan Li其他文献
Identity-based encryption with forward security
具有前向安全性的基于身份的加密
- DOI:
10.1109/icccas.2009.5250508 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Hongwei Li;Haomiao Yang;Fan Li - 通讯作者:
Fan Li
High expression of eIF4E is associated with tumor macrophage infltration and leads to poor prognosis in breast cancer
eIF4E高表达与肿瘤巨噬细胞浸润相关,导致乳腺癌预后不良
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.8
- 作者:
Fan Li;Huizhi Sun;Yue Li;Xiaoyu Bai;Xueyi Dong;Nan Zhao;Jie Meng;Baocun Sun;Danfang Zhang(通讯作者) - 通讯作者:
Danfang Zhang(通讯作者)
Four new sequestrate species of Russulaceae found in China
中国发现4个红菇科新隔离种
- DOI:
10.11646/phytotaxa.289.2.1 - 发表时间:
2016-12 - 期刊:
- 影响因子:1.1
- 作者:
Sang Xiaoyu;Li Xuedong;Wang Yanwei;Fan Li - 通讯作者:
Fan Li
A Qualitative Study of the Ionospheric Weak Response to Super Geomagnetic Storms
超地磁暴电离层弱响应的定性研究
- DOI:
10.3390/atmos11060635 - 发表时间:
2020-06 - 期刊:
- 影响因子:2.9
- 作者:
Haimeng Li;Zhou Chen;Lianqi Xie;Fan Li - 通讯作者:
Fan Li
Changes in Hyoid Bone Position Before and After Distraction Osteogenesis in Infants With Robin Sequence
Robin序列婴儿牵张成骨前后舌骨位置的变化
- DOI:
10.1097/scs.0000000000008377 - 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Fan Li;Hehong Li;J. Hao;Zijun Gao;Hongtao Wang;Yiyang Chen - 通讯作者:
Yiyang Chen
Fan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan Li', 18)}}的其他基金
New Weighting Methods for Causal Inference
因果推理的新加权方法
- 批准号:
1424688 - 财政年份:2014
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Bayesian Multivariate Analysis for Causal Inference with Intermediate Variables
使用中间变量进行因果推理的贝叶斯多元分析
- 批准号:
1155697 - 财政年份:2012
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




