Dynamics and Structure in Complex Molecular Systems
复杂分子系统的动力学和结构
基本信息
- 批准号:1157772
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project by Professor Fayer of Stanford University is supported by the Chemical Structure, Dynamics and Mechanisms Program in the Division of Chemistry, and the Solid State and Materials Chemistry and Condensed Matter Physics Programs in the Division of Materials Research. The research involves an interrelated set of experimental and theoretical investigations of dynamics in complex liquids using optical nonlinear experimental methods and theory. The term complex liquid is used to describe systems that have significant nanoscopic structures that arise from anisotropic intermolecular interactions and give rise to complex structural dynamics. Such liquids include liquid crystals in both the isotropic phase and in macroscopically ordered phases and room temperature ionic liquids (RTILs). Very simple liquids like argon or carbon tetrachloride have no significant liquid structure other than that described in terms of featureless solvation shells. However, highly anisotropic molecules with strong interactions arising from large dipole moments or charges can have extended structures that span many nanometers. The range of the liquid structure can depend on temperature or solutes. Solutes can induce or disrupt structure. Long range ordering occurs in liquids in molecular systems that range from technological applications to biology. A variety of experimental methods will be employed to study the interrelations ships among intermolecular interactions, structure, and dynamics. Optical heterodyne detected optical Kerr effect (OHD-OKE) experiments that cover a time scale from hundreds of femtoseconds to microseconds using a new phase cycling methodology will be employed. The OHD-OKE experiments, which measure the orientational dynamics (polarizability-polarizability correlation function) of liquids, will be combined with ultrafast 2D IR vibrational echo experiments, which measure spectral diffusion (structural dynamics). In addition, polarization selective IR pump-probe experiments will be used that measure orientation relaxation of specific solutes. The 2D IR vibrational echo experiments produce two dimensional spectra which depend on both phase and intensity to provide detailed information akin to 2D NMR. The vibrations of a set of novel probe molecules will be used in the 2D IR studies that provide distinct perspectives on the systems, structures, and dynamics. The aim is to understand the interrelationship between structure and dynamics in these nanostructured systems by making measurements with different techniques as a function of the structure of the molecular units that comprise the systems, temperature, solute type, and concentration. The experiments will be combined with theoretical calculations and simulations, a number of which will be conducted in collaboration with theoretical research groups. The proposed experiments will have a broad impact on our understanding of molecular systems that are important in many fields of science. The development of new experimental methods will be shared widely and will be useful to many in the broad research community. The systems under study are both of fundamental interest and technological importance. Liquid crystals are found in many products. RTILs are being used or considered for a wide variety of applications. This work will broaden the scientific community's understanding of important chemical and materials systems, particularly how nanostructuring influences system properties. In addition to the scientific impact, the Professor Fayer is the faculty head of an outreach program that sends graduate students into local high schools to work with the high school students conducting sets of experiments that are tied into the high school chemistry curriculum. Finally, Professor Fayer is involved in the wide dissemination of teaching materials at both the graduate and under graduate levels and has written a book, "Absolutely Small: How Quantum Theory Explains Our Everyday World" to explain molecular quantum theory and it applications to laymen, high school students, college students, and scientists who are not specialists in quantum theory.
斯坦福大学Fayer教授的这个项目得到了化学系化学结构、动力学和机制项目以及材料研究系固态与材料化学和凝聚态物理项目的支持。该研究涉及一套相互关联的实验和理论研究的动态复杂的液体使用光学非线性实验方法和理论。术语复杂液体用于描述具有显著的纳米级结构的系统,所述纳米级结构由各向异性分子间相互作用产生并产生复杂的结构动力学。这种液体包括各向同性相和宏观有序相的液晶以及室温离子液体(RTIL)。非常简单的液体,如氩或四氯化碳,除了用无特征的溶剂化壳层描述的结构外,没有明显的液体结构。然而,具有由大的偶极矩或电荷引起的强相互作用的高度各向异性的分子可以具有跨越许多纳米的扩展结构。液体结构的范围可取决于温度或溶质。溶质可以诱导或破坏结构。长程有序发生在从技术应用到生物学的分子系统中的液体中。将采用多种实验方法研究分子间相互作用、结构和动力学之间的相互关系。将采用一种新的相位循环方法进行光外差探测光克尔效应(OHD-OKE)实验,实验时间范围从数百飞秒到微秒。OHD-OKE实验测量液体的取向动力学(极化率-极化率相关函数),将与测量光谱扩散(结构动力学)的超快2D IR振动回波实验相结合。此外,将使用偏振选择性IR泵浦探测实验来测量特定溶质的取向弛豫。2D IR振动回波实验产生取决于相位和强度的二维光谱,以提供类似于2D NMR的详细信息。一组新的探针分子的振动将被用于二维红外研究,提供不同的观点的系统,结构和动力学。我们的目的是了解这些纳米结构系统的结构和动力学之间的相互关系,通过不同的技术作为一个功能的分子单元,包括系统,温度,溶质类型和浓度的结构进行测量。实验将与理论计算和模拟相结合,其中一些将与理论研究小组合作进行。拟议的实验将对我们理解在许多科学领域都很重要的分子系统产生广泛的影响。新实验方法的发展将被广泛分享,并将对广大研究界的许多人有用。所研究的系统既具有根本利益,又具有技术重要性。液晶存在于许多产品中。RTIL正被用于或考虑用于各种各样的应用。这项工作将拓宽科学界对重要化学和材料系统的理解,特别是纳米结构如何影响系统性能。除了科学影响,Fayer教授还是一个外展计划的负责人,该计划将研究生送到当地高中,与高中生一起进行与高中化学课程相关的实验。最后,Fayer教授参与了研究生和研究生以下级别教材的广泛传播,并撰写了一本书,“绝对小:量子理论如何解释我们的日常世界”,向外行,高中生,大学生和不是量子理论专家的科学家解释分子量子理论及其应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Fayer其他文献
Michael Fayer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Fayer', 18)}}的其他基金
Investigations of Concentrated Salt and Acid Solutions Using Ultrafast Nonlinear Spectroscopy
使用超快非线性光谱研究浓盐和酸溶液
- 批准号:
2319637 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Dynamics of Ions and Molecules in Concentrated Electrolyte and Acid Solutions
浓电解质和酸溶液中离子和分子的动力学
- 批准号:
1954392 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Dynamics of Mesoscopically Structured Molecular Liquids
介观结构分子液体的动力学
- 批准号:
1461477 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Dynamics in Complex Molecular Condensed Matter Systems-Renewal
复杂分子凝聚态系统动力学-更新
- 批准号:
0652232 - 财政年份:2007
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Dynamics in Complex Molecular Condensed Matter Systems
复杂分子凝聚态系统的动力学
- 批准号:
0332692 - 财政年份:2003
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Dynamics of Molecules in Complex Molecular Materials
复杂分子材料中的分子动力学
- 批准号:
0088942 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Acquisition of Instrumentation for the Study of Dynamics in Solid State Systems
购置用于固态系统动力学研究的仪器
- 批准号:
9111436 - 财政年份:1991
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Dynamics in Molecular Solid State Systems
分子固态系统动力学
- 批准号:
8718959 - 财政年份:1988
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
- 批准号:
2237542 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Nanoscale structure and dynamics of a cell-cell adhesion complex
合作研究:细胞-细胞粘附复合物的纳米级结构和动力学
- 批准号:
2202202 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
- 批准号:
2308660 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Nanoscale structure and dynamics of a cell-cell adhesion complex
合作研究:细胞-细胞粘附复合物的纳米级结构和动力学
- 批准号:
2202203 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
- 批准号:
RGPIN-2019-04242 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
- 批准号:
RGPIN-2019-04242 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
- 批准号:
RGPIN-2019-04242 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
- 批准号:
1942665 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Is snail mucus useful for understanding the complex intertidal community structure and dynamics?
蜗牛粘液对于理解复杂的潮间带群落结构和动态有用吗?
- 批准号:
20K15874 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of complex gene expression regulation dynamics through higher-order genome structure
通过高阶基因组结构阐明复杂的基因表达调控动态
- 批准号:
19K06612 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)