FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
基本信息
- 批准号:1159404
- 负责人:
- 金额:$ 19.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a multi-institutional (Harvard, Brandeis and Texas A&M), interdisciplinary (mathematics and physics) effort to study the mathematical theory of generalized geometries and its applications to string theory. Generalized geometries form a class of almost complex manifolds with reduced structure groups, which have become of central importance to the study of realistic string theory models. These are natural generalizations of Calabi-Yau manifolds and are of mathematical interest in their own right. In one class important for string theory, the canonical structure one seeks on a generalized Calabi-Yau manifold is governed by a fully nonlinear complex Monge Ampere type system that couples a balanced Hermitian metric to an anti self-dual connection of a vector bundle. When the manifold is Kahler Calabi-Yau and the vector bundle is the tangent bundle, this system reduces to the Calabi conjecture for Ricci-flat metrics. Generalized geometries arise as the internal component of spacetime of string theory models that are much closer to our real world than previous constructions. The mathematics that governs such a geometry is a natural extension of deep problems in geometric analysis, algebraic geometry, and deformation theory. The physics that is behind the new geometry provides inspiration and novel approaches to posing and solving the mathematical problems. Their solutions will in turn lead to greater understanding of fundamental problems in physics, making this a truly interdisciplinary collaboration.The mathematical understanding of generalized geometries is still in its nascent stage. The purpose of this proposal is to develop this field further, into a full-fledged extension of Kahler Calabi-Yau geometries. We will focus on the following tightly interconnected problems: constructing new solutions to string theory in this class; characterizing deformations and specifically the moduli of these spaces; computing the dimension of the space's light fields; and an understanding of "generalized calibrations" - the analog of calibrated submanifolds of special holonomy manifolds.
该项目是多机构(哈佛,布兰代斯和德克萨斯A&M),跨学科(数学和物理)的努力,用于研究广义几何形状的数学理论及其在弦理论中的应用。广义的几何形状形成一类几乎复杂的歧管,结构组减少,这对于研究现实弦理论模型的研究至关重要。这些是卡拉比远流形的自然概括,并且本身具有数学兴趣。在一个对字符串理论重要的类中,人们寻求在广义的calabi-yau歧管上寻求的规范结构,受一个完全非线性的复杂蒙吉安培类型系统的控制,该系统将平衡的Hermitian指标与矢量束的反偶联连接结合在一起。当歧管是Kahler Calabi-Yau,而矢量束为切线束时,该系统将减少到Calabi猜想的RICCI-FLAT指标。广义的几何形状是弦理论模型的时空内部组成部分,与以前的结构相比,它更接近我们的现实世界。控制这种几何形状的数学是几何分析,代数几何和变形理论中深处问题的自然扩展。新的几何形状背后的物理学为摆姿势和解决数学问题提供了灵感和新颖的方法。他们的解决方案反过来将导致对物理学的基本问题有更多的了解,使其成为真正的跨学科合作。对广义几何形状的数学理解仍处于其新生阶段。 该提议的目的是进一步发展该领域,成为Kahler Calabi-Yau几何形状的成熟扩展。我们将重点关注以下紧密互连的问题:在此类中构建新的解决方案;表征变形,特别是这些空间的模量;计算空间光场的尺寸; 以及对“广义校准”的理解 - 特殊自动歧管的校准亚策略的类似物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Becker其他文献
Geometric transitions, flops and non-Kähler manifolds: II
- DOI:
10.1016/j.nuclphysb.2005.12.023 - 发表时间:
2006-03-20 - 期刊:
- 影响因子:
- 作者:
Melanie Becker;Keshav Dasgupta;Sheldon Katz;Anke Knauf;Radu Tatar - 通讯作者:
Radu Tatar
Eliminating Medical Device-Related Pressure Ulcers (MDRPU) Caused by Continuous Blood Pressure Cuff Monitoring
- DOI:
10.1016/j.jopan.2017.06.035 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
Hillary Stamps;Lisa Owens;Kristine O’Neill;Melanie Becker - 通讯作者:
Melanie Becker
Targeting of acyl-CoA synthetase 3 to lipid droplets
- DOI:
10.1016/j.chemphyslip.2010.05.148 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Joachim Füllekrug;Regina Großmann;Chen Du;Berenice Rudolph;Melanie Becker;Christoph Thiele;Wolfgang Stremmel;Robert Ehehalt;Margarete Digel - 通讯作者:
Margarete Digel
String corrected spacetimes and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mi mathvariant="normal">SU</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>-structure manifolds
- DOI:
10.1016/j.nuclphysb.2015.04.012 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Katrin Becker;Melanie Becker;Daniel Robbins - 通讯作者:
Daniel Robbins
Melanie Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Becker', 18)}}的其他基金
FRG: Collaborative Research: generalized geometries in string theory
FRG:协作研究:弦理论中的广义几何
- 批准号:
0854930 - 财政年份:2009
- 资助金额:
$ 19.4万 - 项目类别:
Standard Grant
Strings, Branes and the Search for Unification
弦、膜和对统一的追求
- 批准号:
0906222 - 财政年份:2009
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles
M理论、宇宙学和基本粒子标准模型的通量紧化
- 批准号:
0505757 - 财政年份:2005
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles
M理论、宇宙学和基本粒子标准模型的通量紧化
- 批准号:
0552031 - 财政年份:2005
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
Thematic Year on Geometry of String Theory
弦论几何主题年
- 批准号:
0456926 - 财政年份:2005
- 资助金额:
$ 19.4万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 19.4万 - 项目类别:
Standard Grant