Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles

M理论、宇宙学和基本粒子标准模型的通量紧化

基本信息

  • 批准号:
    0552031
  • 负责人:
  • 金额:
    $ 11.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2008-02-29
  • 项目状态:
    已结题

项目摘要

Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles PI: Melanie Becker Institution: University of Maryland One of the goals of this proposal is to construct phenomenologically realistic models that can explain the small and positive cosmological constant recorded by the WMAP data, supernova observations and the HST data. Explaining the value of the cosmological constant has been a challenging problem for theoretical physics since ancient times. String theory does now have the basic tools to address this question very precisely as will be suggested in this proposal. With the same precision it is possible to address cosmology, inflation and the structure of our current universe. A crucial ingredient to answer these questions is string theory and M-theory compactifications with non-vanishing fluxes. Several projects will be suggested along this direction. Due to the duality between supergravity and strongly coupled gauge theories, important issues such as confinement in QCD could in principle be naturally described in this context. The proposed work largely explores the 'landscape' of string theory, the space of dynamically interesting string compactifications. This is an area of growing and long-term significance in string theory. The PI explores in this proposal new types of compactifications, namely heterotic M-theory and non-Kahler, whereas most earlier work has focused on the IIB flux models (which the PI also helped pioneer).
m理论、宇宙学和基本粒子标准模型的通量紧化PI: Melanie Becker机构:马里兰大学本提案的目标之一是构建现象学上的现实模型,以解释WMAP数据、超新星观测和HST数据记录的小而正的宇宙常数。解释宇宙常数的值自古以来就是理论物理学的一个具有挑战性的问题。弦理论现在有了基本的工具来非常精确地解决这个问题,这将在本提案中提出。以同样的精度,它可以解决宇宙学,膨胀和我们当前宇宙的结构。回答这些问题的一个关键因素是具有不消失通量的弦理论和m理论紧化。沿着这个方向将提出几个项目。由于超引力和强耦合规范理论之间的对偶性,QCD中的约束等重要问题原则上可以在这种背景下自然地描述。提出的工作在很大程度上探索了弦理论的“景观”,即动态有趣的弦紧化空间。这是弦理论中一个不断发展和具有长期意义的领域。PI在这一提议中探索了新的紧化类型,即异质性m理论和非kahler理论,而大多数早期的工作都集中在IIB通量模型上(PI也帮助开创了这一模型)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie Becker其他文献

Geometric transitions, flops and non-Kähler manifolds: II
  • DOI:
    10.1016/j.nuclphysb.2005.12.023
  • 发表时间:
    2006-03-20
  • 期刊:
  • 影响因子:
  • 作者:
    Melanie Becker;Keshav Dasgupta;Sheldon Katz;Anke Knauf;Radu Tatar
  • 通讯作者:
    Radu Tatar
The Shape of Inner Space by S. T. Yau and S. Nadis
  • DOI:
    10.1007/s00283-012-9332-x
  • 发表时间:
    2012-10-20
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Melanie Becker
  • 通讯作者:
    Melanie Becker
Eliminating Medical Device-Related Pressure Ulcers (MDRPU) Caused by Continuous Blood Pressure Cuff Monitoring
  • DOI:
    10.1016/j.jopan.2017.06.035
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hillary Stamps;Lisa Owens;Kristine O’Neill;Melanie Becker
  • 通讯作者:
    Melanie Becker
Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans
  • DOI:
    10.1186/1475-2840-12-117
  • 发表时间:
    2013-08-16
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Katja Piotrowski;Melanie Becker;Julia Zugwurst;Ingeborg Biller-Friedmann;Gerald Spoettl;Martin Greif;Alexander W Leber;Alexander Becker;Rüdiger P Laubender;Corinna Lebherz;Burkhard Goeke;Nikolaus Marx;Klaus G Parhofer;Michael Lehrke
  • 通讯作者:
    Michael Lehrke

Melanie Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melanie Becker', 18)}}的其他基金

FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
  • 批准号:
    1159404
  • 财政年份:
    2012
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: generalized geometries in string theory
FRG:协作研究:弦理论中的广义几何
  • 批准号:
    0854930
  • 财政年份:
    2009
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
Strings, Branes and the Search for Unification
弦、膜和对统一的追求
  • 批准号:
    0906222
  • 财政年份:
    2009
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles
M理论、宇宙学和基本粒子标准模型的通量紧化
  • 批准号:
    0505757
  • 财政年份:
    2005
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Thematic Year on Geometry of String Theory
弦论几何主题年
  • 批准号:
    0456926
  • 财政年份:
    2005
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant

相似海外基金

Flavor structure and CP violation from string compactification
字符串压缩带来的风味结构和 CP 破坏
  • 批准号:
    23K03375
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
  • 批准号:
    22K03261
  • 财政年份:
    2022
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Cooperation and Integration system of Urban space planning for Sustainable compactification
可持续压缩的城市空间规划合作整合体系研究
  • 批准号:
    21K14315
  • 财政年份:
    2021
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The metric compactification and its applications in analysis and dynamics
度量紧化及其在分析和动力学中的应用
  • 批准号:
    2467850
  • 财政年份:
    2020
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Studentship
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
  • 批准号:
    1756996
  • 财政年份:
    2017
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
  • 批准号:
    17K05188
  • 财政年份:
    2017
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Obtaining heterotic string theories via orbifold compactification of M-theory at the level of fully non-abelian actions for multiple M2-branes.
通过在多个 M2 膜的完全非阿贝尔作用水平上对 M 理论进行轨道压缩,获得杂优势弦理论。
  • 批准号:
    2026568
  • 财政年份:
    2017
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Studentship
Degeneration and collapsing of Kleinian groups; geometry and analysis of the compactification of their defamation spaces
克莱因群的退化和崩溃;
  • 批准号:
    16H03933
  • 财政年份:
    2016
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
  • 批准号:
    1452037
  • 财政年份:
    2015
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Group Action on the conformal compactification of the Minkowski space
闵可夫斯基空间共形紧化的群作用
  • 批准号:
    443483-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了