Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles
M理论、宇宙学和基本粒子标准模型的通量紧化
基本信息
- 批准号:0505757
- 负责人:
- 金额:$ 1.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-15 至 2006-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles PI: Melanie Becker Institution: University of Maryland One of the goals of this proposal is to construct phenomenologically realistic models that can explain the small and positive cosmological constant recorded by the WMAP data, supernova observations and the HST data. Explaining the value of the cosmological constant has been a challenging problem for theoretical physics since ancient times. String theory does now have the basic tools to address this question very precisely as will be suggested in this proposal. With the same precision it is possible to address cosmology, inflation and the structure of our current universe. A crucial ingredient to answer these questions is string theory and M-theory compactifications with non-vanishing fluxes. Several projects will be suggested along this direction. Due to the duality between supergravity and strongly coupled gauge theories, important issues such as confinement in QCD could in principle be naturally described in this context. The proposed work largely explores the 'landscape' of string theory, the space of dynamically interesting string compactifications. This is an area of growing and long-term significance in string theory. The PI explores in this proposal new types of compactifications, namely heterotic M-theory and non-Kahler, whereas most earlier work has focused on the IIB flux models (which the PI also helped pioneer).
M理论、宇宙学和基本粒子标准模型的通量紧致化 PI:Melanie Becker 机构:马里兰大学 该提案的目标之一是构建唯象现实模型,可以解释 WMAP 数据、超新星观测和 HST 数据记录的小而正的宇宙学常数。解释宇宙常数的值自古以来一直是理论物理学的一个具有挑战性的问题。弦理论现在确实拥有基本工具来非常精确地解决这个问题,正如本提案中所建议的那样。以同样的精度,可以解决宇宙学、通货膨胀和当前宇宙的结构问题。回答这些问题的一个关键因素是弦理论和具有非零通量的 M 理论紧化。将沿着这个方向提出几个项目。由于超引力和强耦合规范理论之间的对偶性,诸如 QCD 中的约束之类的重要问题原则上可以在这种情况下自然地描述。所提出的工作主要探讨了弦理论的“景观”,即动态有趣的弦压缩空间。这是弦理论中一个日益重要且具有长期意义的领域。 PI 在该提案中探索了新型紧化,即杂质 M 理论和非卡勒理论,而大多数早期工作都集中在 IIB 通量模型(PI 也帮助开创了该模型)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Becker其他文献
Geometric transitions, flops and non-Kähler manifolds: II
- DOI:
10.1016/j.nuclphysb.2005.12.023 - 发表时间:
2006-03-20 - 期刊:
- 影响因子:
- 作者:
Melanie Becker;Keshav Dasgupta;Sheldon Katz;Anke Knauf;Radu Tatar - 通讯作者:
Radu Tatar
The Shape of Inner Space by S. T. Yau and S. Nadis
- DOI:
10.1007/s00283-012-9332-x - 发表时间:
2012-10-20 - 期刊:
- 影响因子:0.400
- 作者:
Melanie Becker - 通讯作者:
Melanie Becker
Eliminating Medical Device-Related Pressure Ulcers (MDRPU) Caused by Continuous Blood Pressure Cuff Monitoring
- DOI:
10.1016/j.jopan.2017.06.035 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
Hillary Stamps;Lisa Owens;Kristine O’Neill;Melanie Becker - 通讯作者:
Melanie Becker
Targeting of acyl-CoA synthetase 3 to lipid droplets
- DOI:
10.1016/j.chemphyslip.2010.05.148 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Joachim Füllekrug;Regina Großmann;Chen Du;Berenice Rudolph;Melanie Becker;Christoph Thiele;Wolfgang Stremmel;Robert Ehehalt;Margarete Digel - 通讯作者:
Margarete Digel
String corrected spacetimes and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mi mathvariant="normal">SU</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></math>-structure manifolds
- DOI:
10.1016/j.nuclphysb.2015.04.012 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Katrin Becker;Melanie Becker;Daniel Robbins - 通讯作者:
Daniel Robbins
Melanie Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Becker', 18)}}的其他基金
FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
- 批准号:
1159404 - 财政年份:2012
- 资助金额:
$ 1.52万 - 项目类别:
Standard Grant
FRG: Collaborative Research: generalized geometries in string theory
FRG:协作研究:弦理论中的广义几何
- 批准号:
0854930 - 财政年份:2009
- 资助金额:
$ 1.52万 - 项目类别:
Standard Grant
Strings, Branes and the Search for Unification
弦、膜和对统一的追求
- 批准号:
0906222 - 财政年份:2009
- 资助金额:
$ 1.52万 - 项目类别:
Continuing Grant
Flux Compactification of M-theory, Cosmology and the Standard Model of Elementary Particles
M理论、宇宙学和基本粒子标准模型的通量紧化
- 批准号:
0552031 - 财政年份:2005
- 资助金额:
$ 1.52万 - 项目类别:
Continuing Grant
Thematic Year on Geometry of String Theory
弦论几何主题年
- 批准号:
0456926 - 财政年份:2005
- 资助金额:
$ 1.52万 - 项目类别:
Standard Grant
相似海外基金
Flavor structure and CP violation from string compactification
字符串压缩带来的风味结构和 CP 破坏
- 批准号:
23K03375 - 财政年份:2023
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
- 批准号:
22K03261 - 财政年份:2022
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Cooperation and Integration system of Urban space planning for Sustainable compactification
可持续压缩的城市空间规划合作整合体系研究
- 批准号:
21K14315 - 财政年份:2021
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The metric compactification and its applications in analysis and dynamics
度量紧化及其在分析和动力学中的应用
- 批准号:
2467850 - 财政年份:2020
- 资助金额:
$ 1.52万 - 项目类别:
Studentship
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1756996 - 财政年份:2017
- 资助金额:
$ 1.52万 - 项目类别:
Continuing Grant
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
- 批准号:
17K05188 - 财政年份:2017
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Obtaining heterotic string theories via orbifold compactification of M-theory at the level of fully non-abelian actions for multiple M2-branes.
通过在多个 M2 膜的完全非阿贝尔作用水平上对 M 理论进行轨道压缩,获得杂优势弦理论。
- 批准号:
2026568 - 财政年份:2017
- 资助金额:
$ 1.52万 - 项目类别:
Studentship
Degeneration and collapsing of Kleinian groups; geometry and analysis of the compactification of their defamation spaces
克莱因群的退化和崩溃;
- 批准号:
16H03933 - 财政年份:2016
- 资助金额:
$ 1.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1452037 - 财政年份:2015
- 资助金额:
$ 1.52万 - 项目类别:
Continuing Grant
Group Action on the conformal compactification of the Minkowski space
闵可夫斯基空间共形紧化的群作用
- 批准号:
443483-2013 - 财政年份:2015
- 资助金额:
$ 1.52万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




