FRG: Collaborative Research: Gromov-Witten Theory

FRG:合作研究:格罗莫夫-维滕理论

基本信息

  • 批准号:
    1159964
  • 负责人:
  • 金额:
    $ 16.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

Since the era of Newton, mathematics has been a key tool in helping us comprehend the nature of the universe. Famous examples are calculus via Newtonian mechanics and differential geometry via Einstein's theory of general relativity. During the last twenty years, there has been a great deal of activity devoted to building a so-called string-theoretic model of the universe, which incorporates some of the most sophisticated mathematics. The subject of Gromov-Witten theory was born twenty years ago during a period of intensive interaction between mathematics and physics. Since then Gromov-Witten theory has established itself as a central area in both geometry and physics. At the same time, it has expanded greatly in its scope to many diverse areas of mathematics, ranging from the classical topic of Hurwitz theory to the modern area of Donaldson-Thomas invariants (the sheaf-theoretic counterpart of Gromov-Witten theory). Despite its success, many central problems remain unsolved. Two notable examples are the computation of higer genus Gromov-Witten invariants of compact Calabi-Yau manifolds and the precise relation between Gromov-Witten and Donaldson-Thomas invariants. The resolution of these problems is of great importance for geometry and physics. In this proposal, a team of the best experts in the world is assembled to attack these central problems. In addition, the PIs propose to develop technology to study a variety of questions relating Gromov-Witten theory to enumerative algebraic geometry, symplectic geometry and mathematical physics. The PIs hope to make important and substantial contributions to these areas of mathematics, and their interrelations.This project is interdisciplinary in nature, in that both physical and mathematical ideas play central roles. In this sense it adds to the current trend of interaction between mathematics and physics. This project emphasizes teamwork and collaboration. Through research seminars, organizing and participating in national and international conferences, this proposal will also enhance the training of undergraduate and graduate students, as well as postdoctoral fellows. There will be a number of research publications that will help in introducing students to this exciting area of mathematics.This award is cofunded by the Algebra and Number theory and the Topology programs of DMS.
自牛顿时代以来,数学一直是帮助我们理解宇宙本质的关键工具。著名的例子是微积分通过牛顿力学和微分几何通过爱因斯坦的广义相对论。在过去的20年里,有大量的活动致力于建立一个所谓的宇宙弦理论模型,它包含了一些最复杂的数学。Gromov-Witten理论诞生于20年前,当时数学和物理之间正处于激烈的相互作用时期。 从那时起,Gromov-Witten理论已经成为几何学和物理学的中心领域。 与此同时,它的范围已经大大扩展到许多不同的数学领域,从经典的赫尔维茨理论到现代的唐纳森-托马斯不变量(Gromov-Witten理论的层理论对应物)。尽管取得了成功,但许多核心问题仍未解决。两个著名的例子是紧致Calabi-Yau流形的高亏格Gromov-Witten不变量的计算以及Gromov-Witten和Donaldson-Thomas不变量之间的精确关系。这些问题的解决对几何学和物理学都具有重要意义。在这个建议中,一个由世界上最好的专家组成的团队被召集起来解决这些核心问题。此外,PI建议开发技术来研究Gromov-Witten理论与枚举代数几何,辛几何和数学物理相关的各种问题。 PI希望为这些数学领域及其相互关系做出重要而实质性的贡献。该项目本质上是跨学科的,因为物理和数学思想都发挥着核心作用。 从这个意义上说,它增加了目前的趋势之间的相互作用数学和物理学。这个项目强调团队合作和协作。通过研究研讨会、组织和参加国家和国际会议,该提案还将加强对本科生和研究生以及博士后研究员的培训。将有一些研究出版物,这将有助于向学生介绍这个令人兴奋的数学领域。这个奖项是由DMS的代数和数论和拓扑计划共同资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renzo Cavalieri其他文献

Tropical compactification and the Gromov–Witten theory of $$\mathbb {P}^1$$
  • DOI:
    10.1007/s00029-016-0265-7
  • 发表时间:
    2016-09-03
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Renzo Cavalieri;Hannah Markwig;Dhruv Ranganathan
  • 通讯作者:
    Dhruv Ranganathan
Quadratic pseudostable hodge integrals and Mumford’s relation
  • DOI:
    10.1007/s00209-025-03744-4
  • 发表时间:
    2025-05-03
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Renzo Cavalieri;Matthew M. Williams
  • 通讯作者:
    Matthew M. Williams
Mass formula for non-ordinary curves in one dimensional families
  • DOI:
    10.1007/s00229-024-01610-x
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Renzo Cavalieri;Rachel Pries
  • 通讯作者:
    Rachel Pries
Hyperelliptic Gromov -Witten theory
超椭圆格罗莫夫-维滕理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William D. Gillam;William D. Gillam;Renzo Cavalieri;Johan de Jong;D. Maulik;Rahul Pandhari;John Baldwin;Matt Deland;Joe Ross
  • 通讯作者:
    Joe Ross
Counting bitangents with stable maps
  • DOI:
    10.1016/j.exmath.2006.01.003
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Ayala;Renzo Cavalieri
  • 通讯作者:
    Renzo Cavalieri

Renzo Cavalieri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renzo Cavalieri', 18)}}的其他基金

Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
  • 批准号:
    2100962
  • 财政年份:
    2021
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
Western Algebraic Geometry Symposium
西方代数几何研讨会
  • 批准号:
    1946952
  • 财政年份:
    2019
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
Western Algebraic Geometry Symposium
西方代数几何研讨会
  • 批准号:
    1636713
  • 财政年份:
    2016
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
Tautological Intersection Theory on Moduli Spaces
模空间的同义反复交集理论
  • 批准号:
    1101549
  • 财政年份:
    2011
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
Western Algebraic Geometry Seminar - Five Year Plan
西方代数几何研讨会-五年计划
  • 批准号:
    0955038
  • 财政年份:
    2010
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
Western Algebraic Geometry Seminar - Fall 2009
西方代数几何研讨会 - 2009 年秋季
  • 批准号:
    0951907
  • 财政年份:
    2009
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了