Western Algebraic Geometry Symposium

西方代数几何研讨会

基本信息

  • 批准号:
    1946952
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-15 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The Western Algebraic Geometry Symposium (WAGS) is a series of biannual conferences in the field of algebraic geometry. This award supports six WAGS conferences which will be held at University of Utah on November 2-3, 2019, at Pomona College in Spring 2020, at Stanford in Fall 2020, at University of Colorado in Spring 2021, at University of Washington in Fall 2021, at UCLA in Spring 2022. (While the first two locations are established, some variation in location may happen as a consequence of unforeseen circumstances.) Algebraic geometry is a central subject in mathematics, with deep and substantial connections to almost every aspect of modern mathematics: besides its central role in fundamental research, several recent applications of algebraic geometry (to robotics, big data, machine learning, financial mathematics etc) have made its contributions to society at large more immediate and visible. This broad and active field is widely represented in the Western United States. The primary goal of WAGS is to foster knowledge and communication among members of the algebraic geometry community in the western part of the United States; particular attention is given to fostering an equitable and inclusive environment where all members of the algebraic geometry community can find stimulus and support in pursing excellence in their mathematical activity. Information about the conference series may be found at www.wagsymposium.org.For almost twenty years WAGS has served as a catalyst for the development of algebraic geometry in the Western region of the United States. The collaboration between Cascini, Hacon and McKernan that lead to massive progress in the minimal model program was born through interactions at WAGS. At WAGS Bertram was first exposed to Bridgeland stability conditions, which are now an important aspect of his research activity. Several young researchers, including the PI of this grant, found their PhD thesis problem or benefited from interactions with senior mathematicians at WAGS. Graduate students on the job market have had the occasion to present their work in WAGS poster sessions. Besides continuing the excellent work that has been done, WAGS is seeking to enlarge and improve its scope: besides selecting excellent researchers and communicators as speakers, we endeavor to give a broad representation of both areas of algebraic geometry and of speakers; besides poster sessions, we want to introduce capsule talks and panels to aid the development of younger mathematicians; in particular we are seeking to devote the first afternoon of the conference to some activity organized by and for graduate students, as a way to give junior mathematician ownership of part of the conference with a minimal organizational burden.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
西方代数几何研讨会(WAGS)是代数几何领域的一系列两年一次的会议。该奖项支持六次WAGS会议,这些会议将于2019年11月2日至3日在犹他大学、2020年春季在波莫纳学院、2020年秋季在斯坦福大学、2021年春季在科罗拉多大学、2021年秋季在华盛顿大学、2022年春季在加州大学洛杉矶分校举行。(虽然前两个地点已经确定,但由于不可预见的情况,地点可能会发生一些变化。)代数几何是数学的中心学科,与现代数学的几乎每个方面都有着深刻而实质性的联系:除了在基础研究中的核心作用外,代数几何的一些最新应用(机器人、大数据、机器学习、金融数学等)使其对整个社会的贡献更加直接和可见。这个广泛而活跃的领域在美国西部有广泛的代表。WAGS的主要目标是促进美国西部代数几何社区成员之间的知识和交流;特别注意培养一个公平和包容的环境,使代数几何社区的所有成员都能在追求卓越的数学活动中找到刺激和支持。关于会议系列的信息可以在www.wagsymposium.org.For上找到,近20年来,WAGS一直是美国西部地区代数几何发展的催化剂。Cascini, Hacon和McKernan之间的合作导致了最小模型项目的巨大进展,这是通过在WAGS的互动产生的。在WAGS, Bertram第一次接触到桥地稳定性条件,这现在是他研究活动的一个重要方面。几位年轻的研究人员,包括这项资助的PI,发现了他们的博士论文问题或受益于与WAGS的高级数学家的互动。就业市场上的研究生有机会在WAGS海报会上展示他们的作品。除了继续优秀的工作之外,WAGS正在寻求扩大和改善其范围:除了选择优秀的研究人员和传播者作为演讲者外,我们还努力在代数几何和演讲者两个领域都有广泛的代表性;除了海报会议,我们还想引入胶囊讲座和小组讨论,以帮助年轻数学家的发展;特别是,我们正在寻求将会议的第一个下午用于由研究生组织和为研究生组织的一些活动,作为一种让初级数学家在最小的组织负担下拥有部分会议的方式。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renzo Cavalieri其他文献

Tropical compactification and the Gromov–Witten theory of $$\mathbb {P}^1$$
  • DOI:
    10.1007/s00029-016-0265-7
  • 发表时间:
    2016-09-03
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Renzo Cavalieri;Hannah Markwig;Dhruv Ranganathan
  • 通讯作者:
    Dhruv Ranganathan
Quadratic pseudostable hodge integrals and Mumford’s relation
  • DOI:
    10.1007/s00209-025-03744-4
  • 发表时间:
    2025-05-03
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Renzo Cavalieri;Matthew M. Williams
  • 通讯作者:
    Matthew M. Williams
Mass formula for non-ordinary curves in one dimensional families
  • DOI:
    10.1007/s00229-024-01610-x
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Renzo Cavalieri;Rachel Pries
  • 通讯作者:
    Rachel Pries
Hyperelliptic Gromov -Witten theory
超椭圆格罗莫夫-维滕理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William D. Gillam;William D. Gillam;Renzo Cavalieri;Johan de Jong;D. Maulik;Rahul Pandhari;John Baldwin;Matt Deland;Joe Ross
  • 通讯作者:
    Joe Ross
Counting bitangents with stable maps
  • DOI:
    10.1016/j.exmath.2006.01.003
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Ayala;Renzo Cavalieri
  • 通讯作者:
    Renzo Cavalieri

Renzo Cavalieri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renzo Cavalieri', 18)}}的其他基金

Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
  • 批准号:
    2100962
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Western Algebraic Geometry Symposium
西方代数几何研讨会
  • 批准号:
    1636713
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Gromov-Witten Theory
FRG:合作研究:格罗莫夫-维滕理论
  • 批准号:
    1159964
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Tautological Intersection Theory on Moduli Spaces
模空间的同义反复交集理论
  • 批准号:
    1101549
  • 财政年份:
    2011
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Western Algebraic Geometry Seminar - Five Year Plan
西方代数几何研讨会-五年计划
  • 批准号:
    0955038
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Western Algebraic Geometry Seminar - Fall 2009
西方代数几何研讨会 - 2009 年秋季
  • 批准号:
    0951907
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
  • 批准号:
    2312088
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了