Rigidity and superrigidity in von Neumann algebras

冯诺依曼代数中的刚性和超刚性

基本信息

  • 批准号:
    1161047
  • 负责人:
  • 金额:
    $ 34.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The aim of this project is to develop new techniques to study and classify von Neumann algebras arising from groups and actions of groups on probability spaces. The proposed research is motivated by the following fundamental question: how much does a von Neumann algebra remember about the group or group action it was constructed from? This question is intimately related to topics in ergodic theory, group theory and descriptive set theory and has recently generated a flurry of interactions with these fields. During the last decade, Popa's deformation/rigidity theory has led to a wealth of rigidity results. These show that a lot of information about groups or group actions can be read by looking at their von Neumann algebras. Recently, the first classes of group actions and groups which are von Neumann superrigid (i.e. which can be entirely reconstructed from their von Neumann algebras) have been discovered. The investigator intends to continue this line of research and develop new methods to extend the scope of rigidity and superrigidity in von Neumann algebras. The proposed research will combine von Neumann algebraic techniques from deformation/rigidity theory with tools from ergodic theory and representation theory of groups. The investigator expects that the proposed research project will also lead to new interactions between these fields and the theory of von Neumann algebras.In mathematics, rigidity refers to an ideal-like situation in which understanding part of the structure of an object is enough to unravel the object's entire structure. Over the years, rigidity results have appeared in various areas of mathematics. Recently, deformation/rigidity theory has cemented the role of von Neumann algebras as a fertile framework for studying rigidity. It has led to the resolution of many long-standing problems not only in von Neumann algebras, but in orbit equivalence ergodic theory and descriptive set theory as well. In the coming years, the theory has great potential to find new applications to these areas as well as surprising connections with other fields. The proposed project is well suited to the training of graduate students. It includes many directions of study and open problems that sprung from deformation/rigidity theory. The results deriving from this project will be broadly disseminated through publications, lecture series, and talks. The investigator intends to continue promoting interactions between von Neumann algebras and other subjects within the broad theme of rigidity through active involvement in the organization of conferences and seminars.
这个项目的目的是发展新的技术来研究和分类冯诺依曼代数产生的群体和行动的群体的概率空间。 提出的研究是由以下基本问题的动机:多少冯诺依曼代数记得有关集团或集团行动,它是从?这个问题是密切相关的主题遍历理论,群论和描述集理论,并在最近产生了一系列的互动与这些领域。在过去的十年中,Popa的变形/刚度理论导致了丰富的刚度结果。这些表明,许多关于群或群作用的信息可以通过观察它们的冯诺依曼代数来阅读。最近,第一类群作用和群是冯·诺依曼超刚性的(即可以完全从它们的冯·诺依曼代数重构)已经被发现。研究人员打算继续这条研究路线,并开发新的方法来扩大范诺依曼代数的刚性和超刚性的范围。拟议的研究将结合联合收割机冯诺依曼代数技术从变形/刚性理论与工具遍历理论和表示理论的群体。 研究人员预计,拟议中的研究项目还将导致这些领域与冯·诺依曼代数理论之间的新的相互作用。在数学中,刚性指的是一种类似理想的情况,在这种情况下,理解物体的部分结构就足以解开物体的整个结构。多年来,刚性结果出现在数学的各个领域。最近,变形/刚性理论巩固了冯诺依曼代数作为一个肥沃的框架研究刚性的作用。它不仅解决了冯诺依曼代数中的许多长期存在的问题,而且也解决了轨道等价遍历理论和描述集合论中的许多问题。在未来的几年里,该理论有很大的潜力在这些领域找到新的应用,以及与其他领域的惊人的联系。 该项目非常适合研究生的培养。 它包括许多方向的研究和开放的问题,从变形/刚度理论。 该项目的成果将通过出版物、系列讲座和会谈广泛传播。研究人员打算继续通过积极参与组织会议和研讨会,促进冯诺依曼代数和刚性广泛主题内的其他学科之间的互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Ioana其他文献

Stability in orbit equivalence, central extensions of groups and relative property (T) I, II
轨道等效稳定性、群中心扩张和相关性质 (T) I、II
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才;松本詔;木田良才
  • 通讯作者:
    木田良才
$$W^*$$ -Superrigidity for arbitrary actions of central quotients of braid groups
  • DOI:
    10.1007/s00208-014-1077-8
  • 发表时间:
    2014-08-13
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ionut Chifan;Adrian Ioana;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida
Von Neumann Algebras
冯诺依曼代数
Inner amenable groups, stable actions, and central extensions
内部顺从的群体、稳定的行动和中心延伸
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida
Existential closedness and the structure of bimodules of II1 factors
存在封闭性与 II1 因子双模结构

Adrian Ioana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Ioana', 18)}}的其他基金

Rigidity for von Neumann Algebras and Applications
冯诺依曼代数及其应用的刚性
  • 批准号:
    2153805
  • 财政年份:
    2022
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1854074
  • 财政年份:
    2019
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Standard Grant
West Coast Operator Algebra Seminar 2015; October 10-11, 2015; University of California, San Diego (UCSD)
2015年西海岸算子代数研讨会;
  • 批准号:
    1546346
  • 财政年份:
    2015
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Standard Grant
CAREER: Classification and rigidity for von Neumann algebras
职业:冯诺依曼代数的分类和刚性
  • 批准号:
    1253402
  • 财政年份:
    2013
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Continuing Grant

相似海外基金

An approach to the superrigidity of infinite discrete groups via random groups
通过随机群求解无限离散群超刚性的方法
  • 批准号:
    25287013
  • 财政年份:
    2013
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Superrigidity, Actions on Manifolds and CAT(0) Geometry
超刚性、流形作用和 CAT(0) 几何
  • 批准号:
    0226121
  • 财政年份:
    2002
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Standard Grant
Topological method in Differential Geometry and Conformal theory
微分几何和共形理论中的拓扑方法
  • 批准号:
    09640121
  • 财政年份:
    1997
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Geometric Superrigidity and Compactification of Kahler Manifolds
数学科学:卡勒流形的几何超刚性和紧致化
  • 批准号:
    9204314
  • 财政年份:
    1992
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了