CAREER: Classification and rigidity for von Neumann algebras

职业:冯诺依曼代数的分类和刚性

基本信息

  • 批准号:
    1253402
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this mathematics research project by Adrian Ioana is the classification of von Neumann algebras arising from groups and actions of groups on probability spaces. Von Neumann algebras do not contain significant information about the group or action that they were constructed from. Nevertheless, in the past decade, Popa's deformation/rigidity theory has led to an explosion of rigidity results. These show that many properties of groups or actions can be recognized by looking at their von Neumann algebras. Ioana will develop new methods to study rigidity for von Neumann algebras. Three specific directions of research will be pursued. Firstly, Ioana will expand the scope of super-rigidity for von Neumann algebras by providing new examples of groups and actions that can be entirely reconstructed from their von Neumann algebras. A second direction concerns Cartan subalgebras of von Neumann algebras. Finally, Ioana will investigate the notion of orbit equivalence for group actions. Several research projects on these topics will further the discovery of new knowledge in all of these directions.This mathematics research project is in the general area of operator algebras, and it deals with the classifications of von Neumann algebras. These algebras are connected and have direct applications to a number of areas of science, such as quantum computing, biology (structure of DNA) and engineering (cell phone design). As part of this mathematics research project, the principal investigator Adrian Ioana will develop two new courses at the undergraduate and graduate level, respectively. Ioana is currently mentoring several graduate students and running a seminar in areas close to the research-related content of this project. In addition to supporting graduate students, Ioana will hire and mentor one postdoctoral scholar. Ioana will also organize a research workshop, whose goal is to acquaint young researchers with some of the latest exciting developments on the topics pertaining this project. Finally, Ioana will train high school students and college students to participate in mathematics competitions.
这个数学研究项目的目标是由阿德里安Ioana是分类冯诺依曼代数所产生的群体和行动的群体的概率空间。冯·诺伊曼代数不包含有关构造它们的群或作用的重要信息。然而,在过去的十年中,Popa的变形/刚度理论导致了刚度结果的爆炸。这些表明,许多性质的群体或行动可以认识到,通过看他们的冯诺依曼代数。Ioana将开发新的方法来研究冯诺依曼代数的刚性。将开展三个具体的研究方向。首先,Ioana将通过提供可以完全从其冯诺依曼代数重建的群和作用的新例子来扩展冯诺依曼代数的超刚性范围。第二个方向涉及冯诺依曼代数的Cartan子代数。 最后,Ioana将研究群作用的轨道等价性概念。关于这些主题的几个研究项目将进一步发现所有这些方向的新知识。这个数学研究项目是在算子代数的一般领域,它涉及冯诺依曼代数的分类。这些代数是相互联系的,并直接应用于许多科学领域,如量子计算,生物学(DNA结构)和工程学(手机设计)。 作为这个数学研究项目的一部分,首席研究员阿德里安·约阿纳(Adrian Ioana)将分别在本科和研究生阶段开发两门新课程。 Ioana目前正在指导几名研究生,并在接近该项目研究相关内容的领域举办研讨会。 除了支持研究生,Ioana将聘请和指导一名博士后学者。 Ioana还将组织一个研究研讨会,其目标是让年轻的研究人员了解有关该项目主题的一些最新令人兴奋的发展。 最后,Ioana将培训高中生和大学生参加数学竞赛。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Ioana其他文献

Stability in orbit equivalence, central extensions of groups and relative property (T) I, II
轨道等效稳定性、群中心扩张和相关性质 (T) I、II
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida;松本詔;木田良才;松本詔;木田良才
  • 通讯作者:
    木田良才
$$W^*$$ -Superrigidity for arbitrary actions of central quotients of braid groups
  • DOI:
    10.1007/s00208-014-1077-8
  • 发表时间:
    2014-08-13
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ionut Chifan;Adrian Ioana;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida
Von Neumann Algebras
冯诺依曼代数
Inner amenable groups, stable actions, and central extensions
内部顺从的群体、稳定的行动和中心延伸
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ionut Chifan;Adrian Ioana;and Yoshikata Kida;Sho Matsumoto;Yoshikata Kida;松本詔;Yoshikata Kida
  • 通讯作者:
    Yoshikata Kida
Existential closedness and the structure of bimodules of II1 factors
存在封闭性与 II1 因子双模结构

Adrian Ioana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Ioana', 18)}}的其他基金

Rigidity for von Neumann Algebras and Applications
冯诺依曼代数及其应用的刚性
  • 批准号:
    2153805
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1854074
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
West Coast Operator Algebra Seminar 2015; October 10-11, 2015; University of California, San Diego (UCSD)
2015年西海岸算子代数研讨会;
  • 批准号:
    1546346
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Rigidity and superrigidity in von Neumann algebras
冯诺依曼代数中的刚性和超刚性
  • 批准号:
    1161047
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship Award
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
  • 批准号:
    EP/Y001613/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Classification of contemporary Kansai dialects
当代关西方言的分类
  • 批准号:
    24K03842
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
  • 批准号:
    2905969
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
  • 批准号:
    BB/Y514007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
  • 批准号:
    2415299
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了