Collaborative Research: Hardware-Aware Matrix Computations for Deep Learning Applications
协作研究:深度学习应用的硬件感知矩阵计算
基本信息
- 批准号:2247014
- 负责人:
- 金额:$ 37.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Learning (DL) systems these days are ubiquitous, and arguably affect our everyday lives more than any other computational system. Recently, such deep models (e.g., GPT-3) have increasingly become large and unwieldy with a large computational footprint. Given the ever increasing computational requirements, it has become nearly impossible to make progress on cutting edge research in learning such DL models outside of a few large technological companies. This project will explore principled ways to create DL systems that are as expressive as the large deep models but at a fraction of the computational cost. On the practical front these improvements are expected to expand the possibility of creating such powerful DL models to larger parts of society. On the educational front, this project will train undergraduate (UG) researchers and will integrate responsible computing into UG curriculum.This project will study how one can use structured matrices in concert with modern hardware constraints to achieve similar performance as these really large models but at a fraction of size and computational cost. Specifically, the investigators focus on the following two thrusts: (i) Design the ‘holy grail’ of structured matrices that satisfy all properties that are desirable in DL applications (including having an efficient projection problem as well as having efficient parallel and/or hardware friendly learning algorithms); and (ii) Thinking of new applications that our new theory can unlock. This DL lens exposes new problems to consider when studying structured matrices. In turn, the new family of structured matrices studied in this project will not only have immediate practical applications but will also unlock new twists on classical theoretical problems in matrix computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习(DL)系统如今无处不在,可以说比任何其他计算系统都更能影响我们的日常生活。最近,这种深度模型(例如,GPT-3)变得越来越庞大和笨重,并且占用了大量的计算空间。考虑到不断增长的计算需求,除了几家大型科技公司之外,在学习这种深度学习模型的前沿研究方面几乎不可能取得进展。该项目将探索有原则的方法来创建与大型深度模型一样具有表现力的深度学习系统,但计算成本只是其中的一小部分。在实践方面,这些改进有望将创建如此强大的深度学习模型的可能性扩展到更大的社会领域。在教育方面,该项目将培养本科生(UG)研究人员,并将负责任的计算纳入UG课程。该项目将研究如何在现代硬件约束下使用结构化矩阵,以获得与这些真正的大型模型相似的性能,但尺寸和计算成本只是一小部分。具体来说,研究人员专注于以下两个重点:(i)设计结构化矩阵的“圣杯”,满足深度学习应用中所需的所有属性(包括具有高效的投影问题以及具有高效的并行和/或硬件友好的学习算法);(ii)思考我们的新理论可以解锁的新应用。在研究结构化矩阵时,DL透镜暴露了需要考虑的新问题。反过来,在这个项目中研究的新的结构化矩阵族不仅有直接的实际应用,而且还将解开矩阵计算中经典理论问题的新转折。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zoology: Measuring and Improving Recall in Efficient Language Models
动物学:测量和提高高效语言模型的召回率
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Arora, Simran;Eyuboglu, Sabri;Timalsina, Aman;Johnson, Isys;Poli, Michael;Zou, James;Rudra, Atri;Ré, Christopher
- 通讯作者:Ré, Christopher
Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture
Monarch Mixer:基于简单次二次 GEMM 的架构
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fu, Daniel Y.;Arora, Simran;Grogan, Jessica;Johnson, Isys;Eyuboglu, Sabri;Thomas, Armin W.;Spector, Benjamin;Poli, Michael;Rudra, Atri;Ré, Christopher
- 通讯作者:Ré, Christopher
Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions
- DOI:10.48550/arxiv.2310.18780
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Stefano Massaroli;Michael Poli;Daniel Y. Fu;Hermann Kumbong;Rom N. Parnichkun;Aman Timalsina;David W. Romero;Quinn McIntyre;Beidi Chen;A. Rudra;Ce Zhang;Christopher Ré;Stefano Ermon;Y. Bengio
- 通讯作者:Stefano Massaroli;Michael Poli;Daniel Y. Fu;Hermann Kumbong;Rom N. Parnichkun;Aman Timalsina;David W. Romero;Quinn McIntyre;Beidi Chen;A. Rudra;Ce Zhang;Christopher Ré;Stefano Ermon;Y. Bengio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atri Rudra其他文献
Pricing commodities
- DOI:
10.1016/j.tcs.2009.10.002 - 发表时间:
2011-02-25 - 期刊:
- 影响因子:
- 作者:
Robert Krauthgamer;Aranyak Mehta;Atri Rudra - 通讯作者:
Atri Rudra
Improved Approximation Algorithms for the Spanning Star Forest Problem
- DOI:
10.1007/s00453-011-9607-1 - 发表时间:
2011-12-21 - 期刊:
- 影响因子:0.700
- 作者:
Ning Chen;Roee Engelberg;C. Thach Nguyen;Prasad Raghavendra;Atri Rudra;Gyanit Singh - 通讯作者:
Gyanit Singh
Foreword: a Commemorative Issue for Alan L. Selman
- DOI:
10.1007/s00224-023-10123-1 - 发表时间:
2023-06-19 - 期刊:
- 影响因子:0.400
- 作者:
Elvira Mayordomo;Mitsunori Ogihara;Atri Rudra - 通讯作者:
Atri Rudra
Atri Rudra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atri Rudra', 18)}}的其他基金
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
- 批准号:
1763481 - 财政年份:2018
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
AF:Small:Tight Topology Dependent bounds on Distributed Communication
AF:小:分布式通信的紧密拓扑依赖界限
- 批准号:
1717134 - 财政年份:2017
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
AF:III:Small:Collaborative Research: New Frontiers in Join Algorithms: Optimality, Noise, and Richer Languages
AF:III:Small:协作研究:连接算法的新领域:最优性、噪声和更丰富的语言
- 批准号:
1319402 - 财政年份:2013
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
- 批准号:
1161196 - 财政年份:2012
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Eastern Great Lakes Theory of Computation Workshop
东部五大湖计算理论研讨会
- 批准号:
0942511 - 财政年份:2009
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
CAREER: (TF/TOC) Efficient Computation of Approximate Solutions
职业:(TF/TOC)近似解的高效计算
- 批准号:
0844796 - 财政年份:2009
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Advancing Computer Hardware and Systems' Research Capability, Reproducibility, and Sustainability with the gem5 Simulator Ecosystem
协作研究:框架:利用 gem5 模拟器生态系统提升计算机硬件和系统的研究能力、可重复性和可持续性
- 批准号:
2311893 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Advancing Computer Hardware and Systems' Research Capability, Reproducibility, and Sustainability with the gem5 Simulator Ecosystem
协作研究:框架:利用 gem5 模拟器生态系统提升计算机硬件和系统的研究能力、可重复性和可持续性
- 批准号:
2311892 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320972 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320975 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
- 批准号:
2324949 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
- 批准号:
2247755 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant