New Perspectives in Nonlinear Partial Differential Equations Modeling Collective Quantum Dynamics
非线性偏微分方程建模集体量子动力学的新视角
基本信息
- 批准号:1161580
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the analysis of nonlinear partial differential equations arising in the mathematical description of collective quantum dynamics, with applications to, e.g., Bose-Einstein condensates. The mathematical equations under consideration will mostly be dispersive, and hence conservative, but several non-conservative (or dissipative) extensions will also be studied. By doing so, connections between equations of nonlinear Schrödinger type and complex Ginzburg-Landau type models will become apparent. In the present project the PI will: (1) study the influence of fast rotating potentials, experimentally used to create quantum vortices, on the possibility of finite time blow-up, and establish connections to recently found singular ring type solutions; (2) give a time-dependent description of vortex creation by means of adiabatic perturbation theory; (3) establish rigorous connections between nonlinear Schrödinger equations and other dispersive models; (4) explore the possibility of dispersive blow-up for the considered equations; (5) analyze the long-time behavior of solutions to Schrödinger type equations with additional nonlinear damping terms and other dissipative regularizations. The techniques to be deployed will range from numerical simulations over formal analytical methods to fully rigorous mathematical investigations based on, e.g., virial estimates, multi-scale techniques, Lyapunov-type functionals, and concentration compactness methods.This project aims to find a rigorous mathematical description of certain collective phenomena in many-body quantum mechanics. Quantum mechanics is one of the two fundamental building blocks in modern physics and it concerns the study of mechanical systems whose dimensions are close to, or even smaller than, the atomic scale. The mathematical formulation pioneered by E. Schrödinger, P. Dirac, and J. von Neumann is to a large extent based on partial differential equations for complex-valued wave functions, which describe the state of the particles in a probabilistic interpretation. It is the solution of these equations which can be seen as one of the main driving forces in the early stages of the development of the theory. The present project lies at the intersection between the mathematical analysis of such equations and their application in theoretical physics. It will help gain a deeper mathematical understanding of the qualitative behavior of the different classes of nonlinear equations involved and their relations with each other. Answers to the questions raised will have a strong impact as proven statements in a wide range of the mathematical sciences, and can be seen as complimentary to the vast amount of non-rigorous results available in the physics literature. Most of the proposed research will be conducted through national and international collaborations with colleagues working in mathematical analysis, theoretical physics, and numerical simulations.
该项目致力于分析集体量子动力学的数学描述中产生的非线性偏微分方程,并应用于例如玻色-爱因斯坦凝聚。所考虑的数学方程大多是色散的,因此是保守的,但也将研究几个非保守(或耗散)的扩展。通过这样做,非线性薛定谔型方程和复杂的金斯堡-朗道型模型之间的联系将变得明显。在本项目中,PI将:(1)研究实验上用于产生量子涡旋的快速旋转势对有限时间爆破可能性的影响,并与最近发现的奇异环型解建立联系;(2)通过绝热微扰理论给出涡旋产生的时间依赖性描述;(3)建立非线性薛定谔方程与其它色散模型之间的严格联系:(4)探讨所考虑方程色散爆破的可能性;(5)分析了带有非线性阻尼项和其他耗散正则化项的Schr dinger型方程解的长时间行为。将部署的技术将从正式分析方法的数值模拟到基于以下方面的完全严格的数学研究,例如,维里估计,多尺度技术,李雅普诺夫型泛函和浓度紧致方法。该项目旨在寻找多体量子力学中某些集体现象的严格数学描述。量子力学是现代物理学的两个基本组成部分之一,它涉及研究尺寸接近甚至小于原子尺度的力学系统。由E.薛定谔、狄拉克和冯·诺依曼在很大程度上是基于复值波函数的偏微分方程,它以概率解释描述粒子的状态。这些方程的解可以被看作是理论发展早期阶段的主要驱动力之一。本项目是在这些方程的数学分析和它们在理论物理中的应用之间的交叉点。这将有助于获得更深入的数学理解的定性行为的不同类别的非线性方程及其相互关系。对所提出的问题的回答将在广泛的数学科学中产生强大的影响,并可以被视为对物理学文献中大量非严格结果的补充。大多数拟议的研究将通过与数学分析,理论物理和数值模拟方面的同事进行国家和国际合作进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christof Sparber其他文献
Numerical Evidence for Singularity Formation in Defocusing Fractional NLS in One Space Dimension
一维散焦分数阶非线性薛定谔方程中奇点形成的数值证据
- DOI:
10.1007/s00332-025-10145-8 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:2.600
- 作者:
Christian Klein;Christof Sparber - 通讯作者:
Christof Sparber
Quantum Dynamical Semigroups for Diffusion Models with Hartree Interaction
Hartree 相互作用扩散模型的量子动力学半群
- DOI:
10.1007/s00220-004-1172-x - 发表时间:
2003 - 期刊:
- 影响因子:2.4
- 作者:
A. Arnold;Christof Sparber - 通讯作者:
Christof Sparber
WKB Analysis of Bohmian Dynamics
波姆动力学的 WKB 分析
- DOI:
10.1002/cpa.21487 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Figalli;C. Klein;P. Markowich;Christof Sparber - 通讯作者:
Christof Sparber
Nonlinear bound states with prescribed angular momentum
具有规定角动量的非线性束缚态
- DOI:
10.1007/s00526-023-02599-z - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
I. Nenciu;X.;Christof Sparber - 通讯作者:
Christof Sparber
Dispersive blow-up for nonlinear Schrödinger equations revisited
重新审视非线性薛定谔方程的色散爆炸
- DOI:
10.1016/j.matpur.2014.02.006 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Bona;J. Saut;G. Ponce;Christof Sparber - 通讯作者:
Christof Sparber
Christof Sparber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christof Sparber', 18)}}的其他基金
CAREER: Adiabatic theory for nonlinear Schrodinger equations with applications in complex quantum systems
职业:非线性薛定谔方程的绝热理论及其在复杂量子系统中的应用
- 批准号:
1348092 - 财政年份:2014
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant
相似海外基金
The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
- 批准号:
AH/Y007492/1 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Research Grant
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
- 批准号:
24K16414 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
- 批准号:
24K10701 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
- 批准号:
24K03155 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Black British History: Local Perspectives
英国黑人历史:当地视角
- 批准号:
AH/Y000765/1 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
- 批准号:
EP/X030989/1 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Research Grant
The development and evaluation of a theatrical method to take others' perspectives: parent-child communication
换位思考的戏剧方法的发展与评价:亲子沟通
- 批准号:
23KJ2239 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
- 批准号:
2338091 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Continuing Grant
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
- 批准号:
AH/Y00759X/1 - 财政年份:2024
- 资助金额:
$ 15.3万 - 项目类别:
Research Grant
Healthcare provider perspectives on the role of healthbots in delivering care to patients taking varenicline for smoking cessation
医疗保健提供者对健康机器人在为服用伐尼克兰戒烟的患者提供护理方面的作用的看法
- 批准号:
492844 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别: