CAREER: Adiabatic theory for nonlinear Schrodinger equations with applications in complex quantum systems
职业:非线性薛定谔方程的绝热理论及其在复杂量子系统中的应用
基本信息
- 批准号:1348092
- 负责人:
- 金额:$ 43.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mathematical language of modern physics is to a large extent based on partial differential equations (PDEs). These equations describe the variations of certain physical observables, such as energy, momentum, etc. with respect to more basic variables like space and time. A particularly important feature of PDE-based descriptions is that problems with rather diverse scientific backgrounds can often be described by mathematically similar equations. Many insights about the underlying scientific problem can thus be gained by studying the PDEs themselves using analytical and/or numerical techniques. The current project studies a certain class of nonlinear partial differential equations that arise in the description of collective phenomena in quantum mechanics. Quantum mechanics is one of the two fundamental building blocks in modern physics (the other one being Einstein's theory of general relativity) and it concerns the study of mechanical systems whose dimensions are close to, or even smaller than, the atomic scale. The mathematical formulation pioneered by Erwin Schrödinger, Paul Dirac, and especially John von Neumann is to a large extent based on PDEs for so-called wave functions, which describe the state of the quantum particles in a probabilistic interpretation. It is not surprising that more than 100 years after its discovery, quantum theory has reached a stage of enormous complexity. Modern experimental techniques have made it possible to design, manipulate, and closely monitor quantum mechanical systems involving thousands of particles interacting with each other. In order to obtain a better understanding of these highly complicated systems, it is necessary to clearly separate the slow and fast degrees of freedom intrinsically present within such systems. The main objective of the current project is to develop a mathematical theory which allows to do so by means of several different analytical techniques. Its outcome will be a much simpler mathematical description in which the fast degrees of freedom have been taken into account through their total cummulative effects only. The effective model equation thereby obtained becomes accessible for a more detailed mathematical study and for accurate numerical simulations using the current state of computing power. All of the equations studied arise as important physical models in the description of various quantum mechanical phenomena. Answers to the questions raised will therefore have a strong impact as proven statements in a wide range of theoretical physics, as well as in the analysis of PDEs. In addition, the PI proposes an integrated plan of educational activities related to the proposed research: A series of mini-courses and workshops for advanced graduate students and recent PhDs will be held. They will bring together students with renowned specialists from different fields of mathematics. Furthermore, the PI will organize and support a weekly student seminar for graduate and strong undergraduate students interested in applied analysis and related fields. Finally, the PI has proposed new graduate courses on topics at the juncture of nonlinear dispersive equations, mathematical physics and asymptotic analysis.Separation of scales plays a fundamental role in the understanding of the dynamical behavior of complex systems in physics and other natural sciences. By identifying the slow and fast degrees of freedom, it is often possible to derive simple laws for certain slow variables, which in turn serve as an approximate description of the full multi-scale dynamics of the problem. A particular example is the classical adiabatic theorem of quantum mechanics, going back to M. Born and V. Fock in 1928, which can be loosely stated as follows: A quantum mechanical system subjected to slowly changing external conditions retains its basic form (at least approximately). For quantum systems described by linear Schrödinger equations there is a wealth of mathematical results which give a rigorous meaning to this basic idea. The current project is devoted to the development of a rigorous adiabatic theory for partial differential equations of nonlinear Schrödinger type (and related models). The intellectual relevance of the proposed research stems from the importance of nonlinear Schrödinger equations as mean-field models of complex many-body quantum systems. Applications can be found in the mathematical description of Bose-Einstein condensates, quantum wave guides, and semiconductor graphene layers. All of these applications are at the forefront of modern experimental and theoretical physics. The mathematical theory to be developed will provide a qualitative description of the solutions to the respective model equation in physically relevant multi-scale regimes, and in addition establish deep connections to other areas, such as semiclassical analysis, homogenization theory, and to the study of dispersive equations on manifolds.
现代物理学的数学语言在很大程度上是基于偏微分方程(PDE)。这些方程描述了某些物理观测量的变化,如能量,动量等,相对于更基本的变量,如空间和时间。基于偏微分方程的描述的一个特别重要的特征是,具有相当不同的科学背景的问题通常可以用数学上相似的方程来描述。因此,通过使用分析和/或数值技术研究偏微分方程本身,可以获得许多关于潜在科学问题的见解。目前的项目研究在量子力学中描述集体现象时出现的一类非线性偏微分方程。量子力学是现代物理学的两个基本组成部分之一(另一个是爱因斯坦的广义相对论),它涉及研究尺寸接近甚至小于原子尺度的机械系统。由埃尔温·薛定谔、保罗·狄拉克,尤其是约翰·冯·诺依曼开创的数学公式在很大程度上是基于所谓的波函数的偏微分方程,它以概率解释描述量子粒子的状态。在发现100多年后,量子理论已经达到了一个极其复杂的阶段,这并不奇怪。现代实验技术使设计、操纵和密切监测涉及数千个粒子相互作用的量子力学系统成为可能。为了更好地理解这些高度复杂的系统,有必要清楚地区分这些系统中固有的慢自由度和快自由度。目前项目的主要目标是开发一种数学理论,允许通过几种不同的分析技术来实现这一目标。其结果将是一个简单得多的数学描述,其中的快速自由度已被考虑到通过其总的累积效应。由此获得的有效模型方程可用于更详细的数学研究和使用当前计算能力的精确数值模拟。所有研究的方程都是描述各种量子力学现象的重要物理模型。因此,对所提出的问题的回答将在广泛的理论物理学以及偏微分方程的分析中产生强大的影响。此外,PI提出了与拟议研究相关的教育活动的综合计划:将为高级研究生和最近的博士生举办一系列小型课程和研讨会。他们将把学生与来自不同数学领域的知名专家聚集在一起。此外,PI将组织和支持每周一次的学生研讨会,为研究生和对应用分析和相关领域感兴趣的优秀本科生举办。最后,PI提出了新的研究生课程,主题是非线性色散方程,数学物理和渐近分析。尺度分离在物理学和其他自然科学中复杂系统的动力学行为的理解中起着基础作用。通过识别慢自由度和快自由度,通常可以推导出某些慢变量的简单定律,这些定律反过来又可以近似描述问题的完整多尺度动力学。一个特别的例子是量子力学的经典绝热定理,可以追溯到M。Born和V. Fock在1928年提出的量子力学理论,可以粗略地表述如下:一个量子力学系统在缓慢变化的外部条件下保持其基本形式(至少近似地)。对于由线性薛定谔方程描述的量子系统,有大量的数学结果为这个基本思想提供了严格的意义。目前的项目致力于发展非线性薛定谔型偏微分方程(及相关模型)的严格绝热理论。拟议研究的知识相关性源于非线性薛定谔方程作为复杂多体量子系统的平均场模型的重要性。应用可以在玻色-爱因斯坦凝聚体、量子波导和半导体石墨烯层的数学描述中找到。所有这些应用都处于现代实验和理论物理学的前沿。要开发的数学理论将在物理相关的多尺度制度中提供相应模型方程的解决方案的定性描述,并建立与其他领域的深刻联系,如半经典分析,均匀化理论,以及流形上色散方程的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christof Sparber其他文献
Numerical Evidence for Singularity Formation in Defocusing Fractional NLS in One Space Dimension
一维散焦分数阶非线性薛定谔方程中奇点形成的数值证据
- DOI:
10.1007/s00332-025-10145-8 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:2.600
- 作者:
Christian Klein;Christof Sparber - 通讯作者:
Christof Sparber
Quantum Dynamical Semigroups for Diffusion Models with Hartree Interaction
Hartree 相互作用扩散模型的量子动力学半群
- DOI:
10.1007/s00220-004-1172-x - 发表时间:
2003 - 期刊:
- 影响因子:2.4
- 作者:
A. Arnold;Christof Sparber - 通讯作者:
Christof Sparber
WKB Analysis of Bohmian Dynamics
波姆动力学的 WKB 分析
- DOI:
10.1002/cpa.21487 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Figalli;C. Klein;P. Markowich;Christof Sparber - 通讯作者:
Christof Sparber
Nonlinear bound states with prescribed angular momentum
具有规定角动量的非线性束缚态
- DOI:
10.1007/s00526-023-02599-z - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
I. Nenciu;X.;Christof Sparber - 通讯作者:
Christof Sparber
Dispersive blow-up for nonlinear Schrödinger equations revisited
重新审视非线性薛定谔方程的色散爆炸
- DOI:
10.1016/j.matpur.2014.02.006 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Bona;J. Saut;G. Ponce;Christof Sparber - 通讯作者:
Christof Sparber
Christof Sparber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christof Sparber', 18)}}的其他基金
New Perspectives in Nonlinear Partial Differential Equations Modeling Collective Quantum Dynamics
非线性偏微分方程建模集体量子动力学的新视角
- 批准号:
1161580 - 财政年份:2012
- 资助金额:
$ 43.2万 - 项目类别:
Continuing Grant
相似国自然基金
应用3D UTE-adiabatic-T1ρ和3D UTE-MT序列对骨关节炎早期定量评价的作用机理
- 批准号:82372074
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
- 批准号:
2346729 - 财政年份:2024
- 资助金额:
$ 43.2万 - 项目类别:
Standard Grant
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
- 批准号:
EP/Y005058/2 - 财政年份:2024
- 资助金额:
$ 43.2万 - 项目类别:
Research Grant
Telecommunication band atomic frequency comb quantum memory using stimulated Raman adiabatic passage
使用受激拉曼绝热通道的电信频带原子频率梳量子存储器
- 批准号:
23KJ0051 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
- 批准号:
EP/Y005058/1 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Research Grant
Understanding electronically non-adiabatic reactions in biomolecules with multiscale simulations
通过多尺度模拟了解生物分子中的电子非绝热反应
- 批准号:
10714663 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Hypersonic Velocity Scaling Under Non-Adiabatic Wall Conditions
非绝热壁面条件下的高超声速速度缩放
- 批准号:
558821-2021 - 财政年份:2022
- 资助金额:
$ 43.2万 - 项目类别:
Postgraduate Scholarships - Doctoral
Non-Adiabatic Dynamics in Liquid Jets Studied by Time-Resolved XUV Photoelectronic Spectroscopy
通过时间分辨 XUV 光电光谱研究液体射流中的非绝热动力学
- 批准号:
2154629 - 财政年份:2022
- 资助金额:
$ 43.2万 - 项目类别:
Standard Grant
Theory and Simulation of Non-adiabatic Excited State Dynamics in Nanoscale systems
纳米级系统非绝热激发态动力学的理论与模拟
- 批准号:
2154367 - 财政年份:2022
- 资助金额:
$ 43.2万 - 项目类别:
Standard Grant
Relation between propagation velocity and non-adiabatic temperature distribution of a flame front in low-Mach-number model
低马赫数模型中火焰锋传播速度与非绝热温度分布的关系
- 批准号:
22K13957 - 财政年份:2022
- 资助金额:
$ 43.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical experiments of mantle convection of massive terrestrial planets: roles of interactions between adiabatic compression and changes in physical properties
大质量类地行星地幔对流的数值实验:绝热压缩与物理性质变化之间相互作用的作用
- 批准号:
22K03702 - 财政年份:2022
- 资助金额:
$ 43.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)