Collaborative Research: Statistical Methodology for Network Based Integrative Analysis of Omics Data
合作研究:基于网络的组学数据综合分析统计方法
基本信息
- 批准号:1161565
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this project is to delineate pathways-based on coordinated activity of genes, transcripts, proteins and metabolites, that could potentially serve as therapeutic targets, as well as create Omics based biomarker panels for early detection and prognosis of disease. Specifically, we address the problem of integration and analysis of multiple sources of high dimensional biological data with network structure. It is a well documented fact that correlation between different molecular compartments is relatively low, while the information derived from a single compartment is often highly noisy or even incomplete. Hence, there is a need to develop advanced models and techniques for integrating multiple data sets from diverse Omics platforms, while taking explicitly into consideration the available information of interactions within and between compartments. Particular emphasis is placed on pathway analysis and enrichment due to their role in complex diseases onset and progression. The following directions will be pursued: (1) Development of network based methods that integrate data from multiple Omics platforms for pathway analysis and enrichment. (2) Development of fast computational algorithms for estimating large scale network based integrative models. Investigation of associated inference problems and study of properties of proposed estimators together with their robustness to the noise levels of the network information employed. (3) Introduction of novel hypergraph models for assessing differential activity of pathways that utilize different degrees of information about the structure and accuracy of the underlying network. (4) Development of a novel scheme based on perturbed P-values for detecting active members of pathways that would aid in biomarker discovery. (5) Implementation of the propose methodology into an easy to use software tool. The proposed research program will have a three-pronged impact: methodological, scientific and educational. On the methodology front, the research based on this project will lead (a) to a developing a comprehensive framework for assessing differential activity of pathways based on different models that integrate data from multiple Omics platforms and utilize different degrees of information about the structure and accuracy of the underlying network, (b) a systematicunderstanding of the computational issues involved in large scale (generalized) mixed linear models;and (c) a novel scheme based on perturbed P-values for identifying active members of pathways that become potential targets for therapeutic drugs. The enhanced scientific understanding will provide tangible impact at the level of applications. A number of the proposed methods have already been used in the analysis of high dimensional genomic, proteomic and metabolomic data with emphasis on identifying active pathways (subnetworks) in different disease (primarily cancer) states. Further, a number of new experiments are in the design stage that would utilize some of the advanced models and techniques proposed in this project. Another key aspect of this proposal is the development of an easy to use by practitioners open source software, built within a domain independent workflow management system. This allows users to enhance the software by adding their own functionality and computational tools in an easy and transparent manner. The novel methodological procedures ensuing from this research agenda will be disseminated to the relevant scientific communities, both via inter-disciplinary interaction and collaboration and through presentations at conferences and specialized workshops. Finally, on the educational front, the material from the project will provide research topics for doctoral students working under the supervision of the PIs; it will therefore play an important role in the training of future quantitative scientists.
该项目的总体目标是基于基因、转录本、蛋白质和代谢物的协调活动来描绘可能作为治疗靶点的途径,以及创建基于Omics的生物标记物小组,用于疾病的早期检测和预后。具体地说,我们解决了具有网络结构的多源高维生物数据的集成和分析问题。事实证明,不同分子间的相关性相对较低,而从单一分子间获得的信息往往噪音很高,甚至不完整。因此,需要开发用于集成来自不同OMICS平台的多个数据集的高级模型和技术,同时明确考虑隔间内和隔间交互的可用信息。由于它们在复杂疾病的发生和发展中的作用,因此特别强调途径分析和丰富。将寻求以下方向:(1)开发基于网络的方法,整合来自多个OMICS平台的数据,用于路径分析和丰富。(2)大规模网络综合模型估计的快速算法研究。研究相关的推理问题,研究所提出的估值器的性质以及它们对所用网络信息的噪声水平的稳健性。(3)引入新的超图模型来评估通路的差异活动,这些通路利用关于底层网络的结构和准确性的不同程度的信息。(4)开发了一种基于扰动P值的新方案,用于检测有助于发现生物标记物的途径的活跃成员。(5)将提议的方法实施为易于使用的软件工具。拟议的研究计划将产生三方面的影响:方法、科学和教育。在方法学方面,基于该项目的研究将导致:(A)开发一个基于不同模型的综合框架,用于评估通路的不同活性,该模型集成了来自多个Omics平台的数据,并利用关于底层网络的结构和精度的不同程度的信息;(B)系统地了解大规模(广义)混合线性模型中涉及的计算问题;以及(C)基于扰动P值的新方案,用于识别成为治疗药物潜在靶点的通路的活跃成员。科学认识的加强将在应用层面上产生切实的影响。许多拟议的方法已经被用于高维基因组、蛋白质组和代谢组数据的分析,重点是识别不同疾病(主要是癌症)状态下的活动通路(子网络)。此外,一些新的实验正在设计阶段,这些实验将利用本项目中提出的一些先进模型和技术。这项提议的另一个关键方面是开发一个易于从业者使用的开源软件,构建在一个领域独立的工作流管理系统内。这允许用户以一种简单和透明的方式通过添加他们自己的功能和计算工具来增强软件。这项研究议程所产生的新的方法程序将通过跨学科的互动和协作以及在会议和专门讲习班上的发言向相关科学界传播。最后,在教育方面,该项目的材料将为在私人投资机构指导下工作的博士生提供研究课题;因此,它将在培养未来的量化科学家方面发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Shojaie其他文献
MorPhiC Consortium: towards functional characterization of all human genes
形态学联盟:致力于所有人类基因的功能表征
- DOI:
10.1038/s41586-024-08243-w - 发表时间:
2025-02-12 - 期刊:
- 影响因子:48.500
- 作者:
Mazhar Adli;Laralynne Przybyla;Tony Burdett;Paul W. Burridge;Pilar Cacheiro;Howard Y. Chang;Jesse M. Engreitz;Luke A. Gilbert;William J. Greenleaf;Li Hsu;Danwei Huangfu;Ling-Hong Hung;Anshul Kundaje;Sheng Li;Helen Parkinson;Xiaojie Qiu;Paul Robson;Stephan C. Schürer;Ali Shojaie;William C. Skarnes;Damian Smedley;Lorenz Studer;Wei Sun;Dušica Vidović;Thomas Vierbuchen;Brian S. White;Ka Yee Yeung;Feng Yue;Ting Zhou - 通讯作者:
Ting Zhou
Regularised Spectral Estimation for High-Dimensional Point Processes
高维点过程的正则谱估计
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carla Pinkney;C. Euán;Alex Gibberd;Ali Shojaie - 通讯作者:
Ali Shojaie
Learning Directed Acyclic Graphs from Partial Orderings
从偏序学习有向无环图
- DOI:
10.48550/arxiv.2403.16031 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ali Shojaie;Wenyu Chen - 通讯作者:
Wenyu Chen
Unraveling Alzheimer’s Disease: Investigating Dynamic Functional Connectivity in the Default Mode Network through DCC-GARCH Modeling
揭开阿尔茨海默病的谜底:通过 DCC-GARCH 建模研究默认模式网络中的动态功能连接
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kun Yue;Jason Webster;Thomas Grabowski;H. Jahanian;Ali Shojaie - 通讯作者:
Ali Shojaie
Ali Shojaie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Shojaie', 18)}}的其他基金
Statistical Methods for Discrete-Valued High-Dimensional Time Series with Applications to Neuroscience
离散值高维时间序列的统计方法及其在神经科学中的应用
- 批准号:
1722246 - 财政年份:2017
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Statistical Methods for Differential Network Biology with Applications to Aging
差异网络生物学的统计方法及其在衰老中的应用
- 批准号:
1561814 - 财政年份:2016
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
17th IMS New Researchers Conference (IMS-NRC)
第十七届 IMS 新研究员会议 (IMS-NRC)
- 批准号:
1506255 - 财政年份:2015
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant














{{item.name}}会员




