RUI: Multiple Polylogarithms, Multiple Zeta Functions and Related Topics

RUI:多个多对数、多个 Zeta 函数及相关主题

基本信息

  • 批准号:
    1162116
  • 负责人:
  • 金额:
    $ 10.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Dr. Zhao will work on a number of problems in arithmetic algebraic geometry and number theory. His main focus is on the study of arithmetic, geometric and analytic properties of the multiple polylogarithms and the multiple zeta functions which are generalizations of the classical polylogarithms and the Riemann zeta function, respectively. In recent years, these objects and their various generalizations have appeared prominently in a lot of areas of mathematics and physics. The theory of their special values, in particular, has provided and will continue to provide answers to important and far reaching problems such as those in algebraic geometry involving motives over number fields. Dr. Zhao will utilize the theory of motivic fundamental groups of Deligned and Goncharov, Hopf algebra techniques and Rota-Baxter operators developed by Guo, Kreimer and their collaborators, (quasi-)shuffle algebras studied by Hoffman, and computer-aided computation to investigate the fine structures of these special values.Number theory is one of the foundations of mathematics since the beginning of recorded human history, and it serves nowadays as the basis for many applications, including cryptography and coding theory.Arithmetic algebraic geometry, one of the newest and most active fields of modern mathematics, studies the arithmetic nature of geometric properties of solutions to systems of polynomial equations in several variables. Its application in number theory has both enriched algebraic geometry and revolutionized the study of number theory. The proposed research considers questions involving objects that deeply reflect some fundamental information about fields of algebraic numbers over which these objects are defined. Such questions have their genesis in the work of Goldbach, Euler and Gauss, and mathematicians in generations continue to invent new techniques to try to solve their mysteries. Many parts of the project offer significant research opportunities for undergraduate students through both advanced course works and the summer research programs. Dr. Zhao plans to utilize these opportunities to attract more advanced undergraduate students to study math by involving them in mathematical research in all the stages, from the initial computation to the final presentation of their results in various professional meetings.
赵博士将研究算术、代数、几何和数论方面的一些问题。他的主要研究方向是多重多对数和多重zeta函数的算术、几何和解析性质,它们分别是经典多对数和黎曼zeta函数的推广。近年来,这些对象及其各种推广在数学和物理的许多领域中占有突出地位。特别是关于它们的特殊值的理论,已经并将继续为一些重要而深远的问题提供答案,例如代数几何中涉及数域动机的问题。Zhao博士将利用deldesigned和Goncharov的动机基本群理论,由Guo, Kreimer及其合作者开发的Hopf代数技术和Rota-Baxter算子,Hoffman研究的(拟)洗牌代数,以及计算机辅助计算来研究这些特殊值的精细结构。自从有记载的人类历史开始以来,数论就是数学的基础之一,现在它作为许多应用的基础,包括密码学和编码理论。算术代数几何是现代数学中最新和最活跃的领域之一,它研究多变量多项式方程组解的几何性质的算术性质。它在数论中的应用不仅丰富了代数几何,而且使数论研究发生了革命性的变化。提出的研究考虑了涉及对象的问题,这些对象深刻地反映了这些对象所定义的代数数域的一些基本信息。哥德巴赫(Goldbach)、欧拉(Euler)和高斯(Gauss)的著作中都有这样的问题,一代又一代的数学家不断发明新技术,试图解开这些谜团。该项目的许多部分通过高级课程和暑期研究项目为本科生提供了重要的研究机会。赵博士计划利用这些机会吸引更多的高级本科生学习数学,让他们参与数学研究的各个阶段,从最初的计算到最终在各种专业会议上展示他们的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianqiang Zhao其他文献

Magnetoresistance based resonance monitoring with pulse-excited planar coils
基于磁阻的脉冲激励平面线圈谐振监测
  • DOI:
    10.1063/1.4802756
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Mengchun Pan;Wugang Tian;Dixiang Chen;Jianqiang Zhao
  • 通讯作者:
    Jianqiang Zhao
Study on the nutritional ecology of wild primates
野生灵长类动物营养生态学研究
  • DOI:
    10.1016/j.chnaes.2013.05.004
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoguang Qi;Jian Zhang;Jianqiang Zhao;Baoguo Li
  • 通讯作者:
    Baoguo Li
A SUPER CONGRUENCE INVOLVING MULTIPLE HARMONIC SUMS
  • DOI:
  • 发表时间:
    2014-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqiang Zhao
  • 通讯作者:
    Jianqiang Zhao
[Comparative study of 3D thoracoscopic esophagectomy versus 2D thoracoscopic esophagectomy for esophageal carcinoma].
3D胸腔镜食管癌切除术与2D胸腔镜食管癌切除术的对比研究
MDR 1 polymorphisms are associated with sensitivity to platinum-based chemotherapy in gastric cancer
MDR 1 多态性与胃癌对铂类化疗的敏感性相关
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianqiang Zhao;A. Ouyang;Xinyou Su;Y. Dou
  • 通讯作者:
    Y. Dou

Jianqiang Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianqiang Zhao', 18)}}的其他基金

Polylogarithms and Motivic Cohomology
多对数和动机上同调
  • 批准号:
    0348258
  • 财政年份:
    2003
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Continuing Grant
Polylogarithms and Motivic Cohomology
多对数和动机上同调
  • 批准号:
    0139813
  • 财政年份:
    2002
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Multiple Collocation的北半球多源雪深数据长时序融合研究
  • 批准号:
    42001289
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NEMO - Net zero events using multiple open data sources
NEMO - 使用多个开放数据源的净零事件
  • 批准号:
    10114096
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    SME Support
Vaccination of poultry infected with multiple Salmonella serovars
感染多种沙门氏菌血清型的家禽的疫苗接种
  • 批准号:
    LP230100209
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Linkage Projects
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Standard Grant
Transition Metal - Main Group Multiple Bonding
过渡金属 - 主族多重键合
  • 批准号:
    2349123
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Standard Grant
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
  • 批准号:
    2339794
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Continuing Grant
固形がんによる機能抑制に打ち勝つイヌのmultipleスイッチレセプターCAR-T細胞の開発
开发犬多重开关受体 CAR-T 细胞,克服实体瘤引起的功能抑制
  • 批准号:
    24K18030
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345652
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    $ 10.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了