Time-resolved optical charge sensing for transport measurements on single self-assembled quantum dots

用于单个自组装量子点传输测量的时间分辨光学电荷传感

基本信息

项目摘要

One of the driving forces in solid-state physics over the last 20 years has been the control over the electronic and optical properties of materials by the variation of shape and size on the nanometer scale. This possibility is a paradigm shift towards tailored functional materials in the so-called and prominent Nanotechnology. As an example, self-assembled indium arsenide Nano-islands behave like artificial atoms in a crystalline semiconductor matrix and have been established as an ideal model system to study atom-like properties in a solid-state environment. Besides the fundamental physical interest in these quantum dots, they have already entered the market (in quantum dot lasers) and have visionary perspectives in quantum information processing.Within this research project, a single InAs quantum dots will be used as a very sensitive optical charge detector on the nanoscale. This makes it possible to study the charge carrier dynamics between a second nearby quantum dot and a conducting layer in real-time. Thus, transport properties of single electrons are studied using an optical detection scheme. The nature of the quantum mechanical tunnelling process of differently charged nano-islands can be investigated in a near-equilibrium situation. Furthermore, non-equilibrium quantum states of the electrons are prepared in the single dot, so that their many-particle spin and charge configurations can be detected for the first time, without the need to take electron-hole interaction into account. This all-electric preparation of excited many-particle spin states and their optical detection constitutes a decisive step towards the use of quantum dots for spin-based quantum bits.
在过去的20年里,固态物理学的驱动力之一是通过纳米尺度上形状和尺寸的变化来控制材料的电子和光学性质。这种可能性是一种范式转变,在所谓的和突出的纳米技术的定制功能材料。作为一个例子,自组装砷化铟纳米岛的行为就像晶体半导体基质中的人工原子,并已被建立为一个理想的模型系统,以研究在固态环境中的类原子性质。除了这些量子点的基本物理利益,他们已经进入市场(在量子点激光器),并在量子信息处理有远见的前景。在这个研究项目中,一个单一的InAs量子点将被用作一个非常敏感的光电荷探测器在纳米尺度上。这使得可以实时研究第二邻近量子点和导电层之间的电荷载流子动力学。因此,单电子的输运性质的研究使用的光学检测方案。不同电荷的纳米岛的量子力学隧穿过程的性质可以在近平衡的情况下进行研究。此外,在单点中制备了电子的非平衡量子态,从而可以首次检测到它们的多粒子自旋和电荷构型,而无需考虑电子-空穴相互作用。这种激发多粒子自旋态的全电制备及其光学检测构成了将量子点用于基于自旋的量子比特的决定性一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Martin Geller其他文献

Privatdozent Dr. Martin Geller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Martin Geller', 18)}}的其他基金

Auger-recomination in self-assembled quantum dots
自组装量子点中的俄歇复合
  • 批准号:
    383065199
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deep-level transient spectroscopy for defect characterization in dielectric materials
用于介电材料缺陷表征的深能级瞬态光谱
  • 批准号:
    514161805
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Measuring system for time and spatially resolved optical spectroscopy
时间和空间分辨光谱测量系统
  • 批准号:
    537598070
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
  • 批准号:
    10760193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy transfer at the interface of van der Waals heterostructure with time-resolved electron diffraction and optical spectroscopy
通过时间分辨电子衍射和光谱研究范德华异质结构界面的能量转移
  • 批准号:
    22KK0225
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
  • 批准号:
    10576777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
  • 批准号:
    2226579
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Highly time resolved observation of creation for initial optical isomer excess with ultra sensitive optical purity measurements
通过超灵敏的光学纯度测量,对初始光学异构体过量的产生进行高度时间分辨观察
  • 批准号:
    22H01281
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum Dynamical Studies of Time-resolved Nonlinear Optical Signals from Spatially Oriented Electronic Energy Transfer Complexes
空间定向电子能量传输复合物的时间分辨非线性光信号的量子动力学研究
  • 批准号:
    2102013
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了