AF: EAGER: Homomorphism Problems in Digraphs (Dichotomies)

AF:EAGER:有向图中的同态问题(二分法)

基本信息

  • 批准号:
    1751765
  • 负责人:
  • 金额:
    $ 14.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Graph coloring is one of the most important problems in theoretical computer science. Many combinatorial optimization problems can be viewed as graph coloring problems. For a given graph G and integer k, the question is whether there exists a coloring of its vertices with k colors such that any two adjacent vertices receive different colors. The Graph (or Directed Graph) Homomorphism Problem is a generalization of graph coloring. In the Graph Homomorphism Problem, the goal is to find a mapping from an input graph (or digraph) to a fixed target graph (or digraph) H that preserves adjacency.Homomorphism problems, and the equivalent formulation as so-called constraint satisfaction problems (CSPs), enjoy a wide variety of applications as optimization problems that must be solved in practice. Such applications can be seen in scheduling, planning, databases, artificial intelligence, and many other areas.The Digraph Homomorphism Problem and CSPs have been two very active research areas in Theoretical Computer Science over the last two decades. Several tools (mostly algebraic) have been developed for solving CSPs, and very recently a number of proposed solutions (including our solution) to the main conjecture in the area (known as the CSP Conjecture) have arisen. The present project aims to verify in detail each approach to distill the most elegant proof and most efficient algorithms. The approach is purely combinatorial, using techniques from graph theory.The project will also tackle problems closely related to the newly proposed solutions to the CSP Conjecture. For example, the PIs seek forbidden obstruction characterizations for the types of digraphs H that make homomorphism problems feasible. This would help to improve the running time of the current algorithm.The project aims also to have a high educational impact, through training graduate students in theoretical computer science, producing freely available and high quality lecture notes and survey material on the field, seeking connections between the research and other important areas of research across computing, and utilizing novel teaching and dissemination methods.
图的着色是理论计算机科学中最重要的问题之一。许多组合优化问题都可以看作是图着色问题。对于给定的图G和整数k,问题是是否存在用k种颜色对其顶点着色,使得任意两个相邻顶点得到不同的颜色。图(或有向图)同态问题是图着色问题的一个推广。在图同态问题中,目标是找到从输入图(或有向图)到保持邻接性的固定目标图(或有向图)H的映射。同态问题,以及所谓的约束满足问题(csp)的等价公式,作为在实践中必须解决的优化问题,有着广泛的应用。这样的应用可以在调度、计划、数据库、人工智能和许多其他领域看到。在过去的二十年里,有向图同态问题和csp是理论计算机科学中两个非常活跃的研究领域。已经开发了一些工具(主要是代数工具)来求解CSP,并且最近出现了许多针对该领域主要猜想(称为CSP猜想)的建议解决方案(包括我们的解决方案)。本项目旨在详细验证每种方法,以提取最优雅的证明和最有效的算法。该方法是纯组合的,使用图论的技术。该项目还将解决与CSP猜想新提出的解决方案密切相关的问题。例如,pi寻求使同态问题可行的有向图H类型的禁阻表征。这将有助于改善当前算法的运行时间。该项目还旨在通过培养理论计算机科学的研究生,制作免费和高质量的课堂讲稿和实地调查材料,寻求研究与其他重要计算研究领域之间的联系,以及利用新颖的教学和传播方法,产生高教育影响。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Min-Orderable Digraphs
最小可排序有向图
  • DOI:
    10.1137/19m1241763
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Hell, Pavol;Huang, Jing;McConnell, Ross M.;Rafiey, Arash
  • 通讯作者:
    Rafiey, Arash
Recognizing interval bigraphs by forbidden patterns
通过禁止模式识别区间二联图
  • DOI:
    10.1002/jgt.22792
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Rafiey, Arash
  • 通讯作者:
    Rafiey, Arash
Toward a Dichotomy for Approximation of $H$-coloring
走向$H$着色近似的二分法
  • DOI:
    10.4230/lipics.icalp.2019.91
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akbar Rafiey;A. Rafiey;Thiago Santos
  • 通讯作者:
    Thiago Santos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arash Rafiey其他文献

Minimum Cost Homomorphism Dichotomy for Oriented Cycles
  • DOI:
    10.1007/s00373-009-0853-9
  • 发表时间:
    2009-12-12
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Gregory Gutin;Arash Rafiey;Anders Yeo
  • 通讯作者:
    Anders Yeo
Corrigendum. The Linear Arrangement Problem Parameterized Above Guaranteed Value
  • DOI:
    10.1007/s00224-007-9037-2
  • 发表时间:
    2007-08-10
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Gregory Gutin;Arash Rafiey;Stefan Szeider;Anders Yeo
  • 通讯作者:
    Anders Yeo
Graph classes and Ramsey numbers
  • DOI:
    10.1016/j.dam.2014.03.016
  • 发表时间:
    2014-08-20
  • 期刊:
  • 影响因子:
  • 作者:
    Rémy Belmonte;Pinar Heggernes;Pim van ’t Hof;Arash Rafiey;Reza Saei
  • 通讯作者:
    Reza Saei
Minimum cost homomorphisms to semicomplete multipartite digraphs
  • DOI:
    10.1016/j.dam.2007.09.023
  • 发表时间:
    2008-06-28
  • 期刊:
  • 影响因子:
  • 作者:
    Gregory Gutin;Arash Rafiey;Anders Yeo
  • 通讯作者:
    Anders Yeo
Minimum cost and list homomorphisms to semicomplete digraphs
  • DOI:
    10.1016/j.dam.2005.11.006
  • 发表时间:
    2006-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Gregory Gutin;Arash Rafiey;Anders Yeo
  • 通讯作者:
    Anders Yeo

Arash Rafiey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了