RI: Medium: Quantifying and utilizing confidence in machine learning

RI:中:量化和利用机器学习的信心

基本信息

  • 批准号:
    1162581
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This project defines meaningful notions of confidence in prediction, designs procedures for computing such notions, and applies these procedures to core machine learning tasks such as active learning, crowd-sourced learning, and tracking. In many applications it is helpful to have classifiers that output, together with each prediction, a rating of the confidence that the prediction is in fact correct. Existing literature either provides various ad-hoc ways for computing such ratings which typically lack a rigorous mathematical footing, or provides mathematically consistent methods (in the Bayesian framework) for computing confidence ratings under very strong assumptions that are unlikely to hold in practice. The research team investigates methods of computing measures of confidence that are mathematically rigorous while making minimal assumptions on the way data is generated, and use these measures to further develop solutions to core machine learning tasks.Defining and computing mathematically sound measures of confidence lies at the heart of machine learning, pattern recognition and uncertainty in AI. Confidence-rated prediction, active learning, and tracking are fundamental tasks of machine learning and statistics that arise repeatedly in large-scale problems; this project will develop rigorous solutions to these problems. The algorithms developed in this work are tested and used in the Automatic Cameraman project, an interactive, audio-visual installation in the UCSD Computer Science department. The interactive Automatic Cameraman system are used an educational tool to be extended in many different directions, by teams of students at a variety of skill levels.
该项目定义了有意义的预测信心概念,设计了计算这些概念的程序,并将这些程序应用于核心机器学习任务,如主动学习、众包学习和跟踪。在许多应用程序中,使用分类器输出预测实际上正确的置信度评级是很有帮助的。现有文献要么提供各种特别的方法来计算这种评级,通常缺乏严格的数学基础,要么提供数学上一致的方法(在贝叶斯框架中)在非常强的假设下计算置信度评级,这些假设在实践中不太可能成立。研究小组研究了计算置信度的方法,这些方法在数学上是严格的,同时对数据生成方式做出最小的假设,并使用这些措施进一步开发核心机器学习任务的解决方案。定义和计算在数学上合理的信心度量是人工智能中机器学习、模式识别和不确定性的核心。置信度预测、主动学习和跟踪是机器学习和统计学的基本任务,在大规模问题中反复出现;这个项目将为这些问题制定严格的解决方案。在这项工作中开发的算法被测试并用于自动摄像机项目,这是加州大学圣地亚哥分校计算机科学系的一个交互式视听装置。交互式自动摄像师系统是一种教育工具,可以扩展到许多不同的方向,由不同技能水平的学生组成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoav Freund其他文献

span class="sans-serif"StreaMRAK/span a streaming multi-resolution adaptive kernel algorithm
  • DOI:
    10.1016/j.amc.2022.127112
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Andreas Oslandsbotn;Željko Kereta;Valeriya Naumova;Yoav Freund;Alexander Cloninger
  • 通讯作者:
    Alexander Cloninger

Yoav Freund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoav Freund', 18)}}的其他基金

EAGER: Computer Architectures and Algorithms for Adaptive Human Computer Interfaces
EAGER:自适应人机界面的计算机架构和算法
  • 批准号:
    1143995
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RI-Small: Learning from data of low intrinsic dimension
RI-Small:从低内在维度的数据中学习
  • 批准号:
    0812598
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似海外基金

III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
  • 批准号:
    2033792
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
SHF: Medium: Quantifying and Designing Around Architectural Risk
SHF:中:围绕架构风险进行量化和设计
  • 批准号:
    1763699
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Quantifying the impact of stellar feedback on the interstellar medium
量化恒星反馈对星际介质的影响
  • 批准号:
    533571-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Quantifying residential access and exposure to urban greenspace using medium and high-resolution satellite imagery: a case study of Metro Vancouver, British Columbia
使用中高分辨率卫星图像量化住宅进入和接触城市绿地:不列颠哥伦比亚省大温哥华地区的案例研究
  • 批准号:
    528800-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
  • 批准号:
    1562657
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1563950
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1562303
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Quantifying the structure of the molecular interstellar medium with the G-virial method
用 G-virial 方法量化分子星际介质的结构
  • 批准号:
    263085682
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Priority Programmes
Study on Quantifying Visual Quality and Feeling of Semitransparent Medium
量化半透明介质视觉质量和感觉的研究
  • 批准号:
    24656147
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
RI: Medium: Quantifying Causality in Distributed Spatial Temporal Brain Networks
RI:中:量化分布式时空脑网络中的因果关系
  • 批准号:
    0964197
  • 财政年份:
    2010
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了