RI: Medium: Quantifying Causality in Distributed Spatial Temporal Brain Networks
RI:中:量化分布式时空脑网络中的因果关系
基本信息
- 批准号:0964197
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key hurdle in studies of brain function is to be able to measure not only what signals are correlated with one another, but also how they are causally related. Correlation quantifies linear dependence, while causality is capable of distinguishing which brain area is leading the correlated counterparts; causality puts an arrow into correlation. Causality is a difficult problem in data analysis and here a novel measure of conditional statistical dependence to evaluate causality is proposed. The ultimate practical goal is to elucidate the principles of cognitive processing and provide online cognitive feedback to human subjects performing complex tasks. The objective of this project is to use a recently developed paradigm for electroencephalogram (EEG) quantification based on periodic visual stimulation to improve the signal to noise ratio of visual stimulation on a pre-determined EEG frequency band (here around 10 Hz). The goal is to develop advanced signal processing techniques based on instantaneous frequency (Hilbert transform) to quantify the instantaneous amplitude of a visual stimulus in 32 channels over the scalp. A recently developed measure of local statistical dependence in the joint space called correntropy will be utilized to evaluate the dependency among instantaneous amplitude time series collected over the scalp. The maximum value of correntropy is a measure of statistical dependence, which is the first step towards causality. To achieve a causality measure, conditional dependence will be evaluated by extending correntropy to conditional correntropy, first for triplets of variables and them to subspaces of arbitrary dimensions. Correntropy is a nonparametric measure of dependence; hence, the new method will be compared to linear and nonlinear Granger causality methods implemented in reproducing kernel Hilbert spaces.These algorithms will be tested on data collected from human subjects in a study of affective visual perception. The goal is to study and quantify the re-entry hypothesis of emotional perception -- that re-entrant modulation originating from higher-order cortices is responsible for enhanced activation in the occipital cortex when emotionally arousing stimuli are perceived. The signal processing and statistical methods developed here will provide a way to identify dependent EEG channels and causal relationships amongst them during the presentation of the stimulus, effectively tracing the flow of neural activity from the stimulated visual areas to frontal areas and back to the visual cortex.
研究大脑功能的一个关键障碍是不仅要能够测量哪些信号相互关联,还要能够测量它们之间的因果关系。相关性量化了线性相关性,而因果关系能够区分哪个大脑区域正在领导相关的对应区域;因果关系为相关性注入了一个箭头。因果关系是数据分析中的一个难题,本文提出了一种新的条件统计依赖测度来评价因果关系。最终的实际目标是阐明认知处理的原理,并为执行复杂任务的人类受试者提供在线认知反馈。 该项目的目的是使用最近开发的基于周期性视觉刺激的脑电图(EEG)量化范例,以提高预定EEG频带(此处约10 Hz)上的视觉刺激的信噪比。目标是开发基于瞬时频率(希尔伯特变换)的先进信号处理技术,以量化头皮上32个通道中视觉刺激的瞬时幅度。最近开发的措施,在联合空间称为相关性的局部统计依赖性将被用来评估头皮上收集的瞬时幅度时间序列之间的依赖性。相关熵的最大值是统计相关性的度量,这是走向因果关系的第一步。为了实现因果关系的测量,条件依赖性将通过将相关熵扩展到条件相关熵来评估,首先是三个变量,然后是任意维度的子空间。相关性是一种非参数的依赖性的措施,因此,新的方法将进行比较,线性和非线性格兰杰因果关系的方法实现再生核希尔伯特spaces.These算法将测试从人类受试者的情感视觉感知的研究中收集的数据。我们的目标是研究和量化情绪感知的折返假说--当感知到情绪刺激时,源自高阶皮层的折返调制负责增强枕叶皮层的激活。这里开发的信号处理和统计方法将提供一种方法来识别依赖的EEG通道和它们之间的因果关系,在刺激的呈现过程中,有效地跟踪从受刺激的视觉区域到额叶区域再回到视觉皮层的神经活动流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Principe其他文献
fMRI analysis: Distribution divergence measure based on quadratic entropy
- DOI:
10.1016/s1053-8119(00)91452-6 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Qun Zhao;Jose Principe;Margaret Bradley;Peter Lang - 通讯作者:
Peter Lang
Jose Principe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Principe', 18)}}的其他基金
RAPID: Inexpensive, rapidly manufacturable respiratory monitor to provide safe emergency ventilation during the COVID-19 pandemic
RAPID:廉价、可快速制造的呼吸监测仪,可在 COVID-19 大流行期间提供安全的紧急通气
- 批准号:
2028709 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Testing the Feasibility of Batteryless Physiological Monitoring
测试无电池生理监测的可行性
- 批准号:
1723366 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: A Computational Neuroscience Framework for Olfactory Scene Analysis within Complex Fluid Environments
合作研究:NCS-FO:复杂流体环境中嗅觉场景分析的计算神经科学框架
- 批准号:
1631759 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Optimal Modeling in Curved Reproducing Kernel Hilbert Spaces
曲线再生核希尔伯特空间中的最优建模
- 批准号:
0601271 - 财政年份:2006
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Design, Analysis and Validation of Biologically Plausible Computational Models.
生物学上合理的计算模型的设计、分析和验证。
- 批准号:
0422718 - 财政年份:2004
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
A Theory of Learning Based on Pairwise Interactions
基于成对互动的学习理论
- 批准号:
0300340 - 财政年份:2003
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Information Theoretic Learning for Pattern Recognition and Signal Processing
模式识别和信号处理的信息论学习
- 批准号:
9900394 - 财政年份:1999
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
A Net-Centric Undergraduate Course in Adaptive Systems
以网络为中心的自适应系统本科课程
- 批准号:
9872526 - 财政年份:1998
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似海外基金
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
2033792 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SHF: Medium: Quantifying and Designing Around Architectural Risk
SHF:中:围绕架构风险进行量化和设计
- 批准号:
1763699 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Quantifying the impact of stellar feedback on the interstellar medium
量化恒星反馈对星际介质的影响
- 批准号:
533571-2018 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Quantifying residential access and exposure to urban greenspace using medium and high-resolution satellite imagery: a case study of Metro Vancouver, British Columbia
使用中高分辨率卫星图像量化住宅进入和接触城市绿地:不列颠哥伦比亚省大温哥华地区的案例研究
- 批准号:
528800-2018 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
III: Medium: Quantifying the Unknown Unknowns for Data Integration
III:媒介:量化数据集成的未知因素
- 批准号:
1562657 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
- 批准号:
1563950 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
- 批准号:
1562303 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Quantifying the structure of the molecular interstellar medium with the G-virial method
用 G-virial 方法量化分子星际介质的结构
- 批准号:
263085682 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Priority Programmes
Study on Quantifying Visual Quality and Feeling of Semitransparent Medium
量化半透明介质视觉质量和感觉的研究
- 批准号:
24656147 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RI: Medium: Quantifying and utilizing confidence in machine learning
RI:中:量化和利用机器学习的信心
- 批准号:
1162581 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Standard Grant