Conformal blocks and positive cycles on the moduli space of curves
曲线模空间上的共形块和正循环
基本信息
- 批准号:1201268
- 负责人:
- 金额:$ 11.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The moduli space of stable n-pointed curves of genus g, is endowed with vector bundles having interesting positivity properties and connections to many different areas of mathematics and mathematical physics. Over a point, the bundles are naturally described as conformal blocks, vector spaces that arise as basic objects in rational conformal field theory. The projects in this proposal are focused on three general themes, aimed at developing our understanding of vector bundles of conformal blocks bundles and their interplay with cycles on the moduli space. The first project aims to show the Chern classes of so-called "critical level bundles" are subject to ''strange identities'', given by interchanging roles of level and rank. The second project explores properties of conformal blocks divisors, including their corresponding morphisms, questions of finite generation, and applications. The third project is concerned with cones of positive cycles on varieties, illustrated for the moduli space of stable n-pointed rational curves via conformal blocks.Moduli spaces of stable curves with marked points occupy a unique and prominent position in the algebro-geometric universe. As moduli spaces, they give insight into the study of smooth curves and their degenerations, and as special varieties, they have played an important role in developing general theory. Recent work has revealed that many combinatorial aspects of the spaces are reflections of underlying geometric structures embodied by vector bundles of conformal blocks. The projects in this proposal aim both to use the features of these vector bundles to discover the nature of the moduli spaces, and also to use the architecture of the moduli spaces to reveal underlying relationships between the vector bundles.
亏格g的稳定n点曲线的模空间具有有趣的正性性质和与数学和数学物理的许多不同领域有关的向量丛。在一点上,丛自然地被描述为共形块,即作为有理共形场理论中的基本对象而出现的矢量空间。这个提案中的项目集中在三个一般主题上,旨在加深我们对保形块丛的向量丛及其与模空间上的循环的相互作用的理解。第一个项目旨在展示陈氏班级的所谓“关键级别捆绑”受制于“奇怪的身份”,由级别和级别的互换角色赋予。第二个项目探索共形块因子的性质,包括它们对应的态射、有限生成问题和应用。第三个方案是关于簇上正循环的锥体,通过共形块来描述稳定的n点有理曲线的模空间,具有标记点的稳定曲线的模空间在代数几何宇宙中占有独特而显著的地位。作为模空间,它们深入到光滑曲线及其退化的研究中,作为特殊的变种,它们在发展一般理论方面发挥了重要作用。最近的工作表明,空间的许多组合方面是由共形块向量丛所体现的基本几何结构的反映。该方案的目的既是利用这些向量丛的特征来发现模空间的性质,也是利用模空间的体系结构来揭示向量丛之间的潜在关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Gibney其他文献
Scaling of conformal blocks and generalized theta functions over $$\overline{\mathcal {M}}_{g,n}$$
- DOI:
10.1007/s00209-016-1682-1 - 发表时间:
2016-05-10 - 期刊:
- 影响因子:1.000
- 作者:
Prakash Belkale;Angela Gibney;Anna Kazanova - 通讯作者:
Anna Kazanova
On extensions of the Torelli map
- DOI:
10.4171/119 - 发表时间:
2012-05 - 期刊:
- 影响因子:0
- 作者:
Angela Gibney - 通讯作者:
Angela Gibney
Conformal Blocks on Smoothings via Mode Transition Algebras
- DOI:
10.1007/s00220-025-05237-1 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Chiara Damiolini;Angela Gibney;Daniel Krashen - 通讯作者:
Daniel Krashen
Angela Gibney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Gibney', 18)}}的其他基金
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
- 批准号:
2202068 - 财政年份:2021
- 资助金额:
$ 11.06万 - 项目类别:
Continuing Grant
Collaborative Proposal: AGNES: Algebraic Geometry NorthEastern Series
合作提案:AGNES:代数几何东北系列
- 批准号:
1937370 - 财政年份:2019
- 资助金额:
$ 11.06万 - 项目类别:
Continuing Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
- 批准号:
1902237 - 财政年份:2019
- 资助金额:
$ 11.06万 - 项目类别:
Continuing Grant
Vector Bundles of Conformal Blocks on Moduli Spaces
模空间上共角块的向量丛
- 批准号:
1820718 - 财政年份:2017
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Vector Bundles of Conformal Blocks on Moduli Spaces
模空间上共角块的向量丛
- 批准号:
1601909 - 财政年份:2016
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
The Boot Camp for the 2015 Algebraic Geometry Summer Research Institute
2015年代数几何暑期研究院集训营
- 批准号:
1500652 - 财政年份:2015
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1139200 - 财政年份:2011
- 资助金额:
$ 11.06万 - 项目类别:
Continuing Grant
COMPACT MODULI AND VECTOR BUNDLES CONFERENCE
紧凑模和向量束会议
- 批准号:
1028536 - 财政年份:2010
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
The Birational Geometry of Moduli Spaces of Curves
曲线模空间的双有理几何
- 批准号:
0509319 - 财政年份:2004
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
Birman-Murakami-Wenzl代数及其相关代数的表示理论
- 批准号:10901102
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 11.06万 - 项目类别:
Legacy Department of Trade & Industry
Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
- 批准号:
DP240101571 - 财政年份:2024
- 资助金额:
$ 11.06万 - 项目类别:
Discovery Projects
Digital building blocks of elementary school foreign language reading motivation
小学外语阅读动机的数字积木
- 批准号:
23K25344 - 财政年份:2024
- 资助金额:
$ 11.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
- 批准号:
2348679 - 财政年份:2024
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Development of a cancer immunoregenerative therapy that blocks function-suppressive RNA editing signals from cancer cells to immune cells.
开发一种癌症免疫再生疗法,阻断从癌细胞到免疫细胞的功能抑制性 RNA 编辑信号。
- 批准号:
23K08173 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PFI-TT: Commercialization of Low-Carbon Concrete Blocks at Scale
PFI-TT:低碳混凝土砌块的大规模商业化
- 批准号:
2234543 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Stereoselective Reactions of Aromatic Building Blocks
芳香族嵌段的立体选择性反应
- 批准号:
2246693 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Standard Grant
Development of a targeted TGF-b therapeutic that selectively blocks lung fibrosis in idiopathic pulmonary fibrosis (IPF) patients
开发选择性阻断特发性肺纤维化 (IPF) 患者肺纤维化的靶向 TGF-b 疗法
- 批准号:
10697961 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Establishment of underwater electromechanically-driven soft robots consisting solely of chemical blocks
建立仅由化学块组成的水下机电驱动软机器人
- 批准号:
23K17738 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Catalytic Hydrofluorination for the Assembly of Chiral Fluorinated Building Blocks
用于组装手性氟化砌块的催化氢氟化反应
- 批准号:
EP/X013081/1 - 财政年份:2023
- 资助金额:
$ 11.06万 - 项目类别:
Research Grant