Geometry of Moduli Spaces, Geometric Invariant Theory, and Deformations of Singularities
模空间几何、几何不变量理论和奇点变形
基本信息
- 批准号:1201286
- 负责人:
- 金额:$ 11.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2012-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with the study of moduli spaces in algebraic geometry. By using methods of Geometric Invariant Theory, deformation theory, and enumerative geometry, the investigator will pursue several projects in order to elucidate the geometry of well-studied moduli spaces and to adopt new approaches to less studied ones. In the first project, the investigator will continue the study of finite Hilbert stability of embedded curves with the goal of advancing the log minimal model program for the Deligne-Mumford moduli space of stable curves. In the second project, the investigator will approach fundamental open questions about effective and ample divisors on this moduli space and its variants. The study of singularities is an important ingredient of these two projects. In the third project, the investigator will extend recent results in the theory of curves to certain classes of higher-dimensional varieties (e.g., K3 surfaces) and their moduli spaces.An algebraic variety is a collection of solutions to a system of polynomial equations. Algebraic varieties are fundamental objects of study in mathematics and, in particular, in the field of algebraic geometry, to which this proposal belongs. Variation of the polynomials' coefficients gives rise to a moduli space for a given class of varieties. The study of moduli spaces is essential to understanding algebraic varieties themselves and, ultimately, to solving systems of polynomial equations. The investigator proposes to study moduli spaces of algebraic varieties depending on one or two free parameters using both classical and modern techniques. The broader impacts of the proposal include advancing an active research program and co-organizing workshops on moduli spaces and related problems.
该提案涉及代数几何中模空间的研究。通过使用几何不变量理论、变形理论和枚举几何的方法,研究人员将开展多个项目,以阐明已深入研究的模空间的几何结构,并对较少研究的模空间采用新的方法。在第一个项目中,研究人员将继续研究嵌入曲线的有限希尔伯特稳定性,目标是推进稳定曲线的 Deligne-Mumford 模空间的对数最小模型程序。在第二个项目中,研究人员将探讨有关该模空间及其变体的有效和充足除数的基本开放问题。对奇点的研究是这两个项目的重要组成部分。在第三个项目中,研究人员将曲线理论的最新成果扩展到某些类别的高维簇(例如 K3 曲面)及其模空间。代数簇是多项式方程组的解的集合。代数簇是数学研究的基本对象,特别是本提案所属的代数几何领域。多项式系数的变化产生了给定类别变体的模空间。模空间的研究对于理解代数簇本身以及最终求解多项式方程组至关重要。研究人员建议使用经典和现代技术来研究取决于一两个自由参数的代数簇的模空间。该提案的更广泛影响包括推进积极的研究计划以及共同组织模空间和相关问题的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maksym Fedorchuk其他文献
Moduli spaces of hyperelliptic curves with A and D singularities
- DOI:
10.1007/s00209-013-1201-6 - 发表时间:
2013-08-09 - 期刊:
- 影响因子:1.000
- 作者:
Maksym Fedorchuk - 通讯作者:
Maksym Fedorchuk
GIT semistability of Hilbert points of Milnor algebras
- DOI:
10.1007/s00208-016-1377-2 - 发表时间:
2016-03-18 - 期刊:
- 影响因子:1.400
- 作者:
Maksym Fedorchuk - 通讯作者:
Maksym Fedorchuk
Maksym Fedorchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maksym Fedorchuk', 18)}}的其他基金
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1651082 - 财政年份:2017
- 资助金额:
$ 11.8万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
- 批准号:
1360598 - 财政年份:2014
- 资助金额:
$ 11.8万 - 项目类别:
Continuing Grant
Geometry of Moduli Spaces, Geometric Invariant Theory, and Deformations of Singularities
模空间几何、几何不变量理论和奇点变形
- 批准号:
1259226 - 财政年份:2012
- 资助金额:
$ 11.8万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 11.8万 - 项目类别:
Research Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 11.8万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 11.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
- 批准号:
RGPIN-2022-04908 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Discovery Grants Program - Individual
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Discovery Grants Program - Individual
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Continuing Grant
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
- 批准号:
RGPIN-2021-04169 - 财政年份:2022
- 资助金额:
$ 11.8万 - 项目类别:
Discovery Grants Program - Individual