Graph C*-algebras, special subalgebras, and applications
图 C*-代数、特殊子代数和应用
基本信息
- 批准号:1201564
- 负责人:
- 金额:$ 15.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph algebras provide a fascinating link between the fields of operator algebras and dynamical systems. The proposed research explores this connection in two different directions. The graph algebras, introduced by Cuntz and Krieger in 1980, have been generalized and extended in a variety of ways to comprise a large collection of interesting C*-algebras. The investigator, along with collaborator Gabriel Nagy, has recently found a new proof of a generalized Cuntz-Krieger uniqueness theorem. This work has led to their discovery of a class of C*-subalgebras, pseudo-diagonals. One of the defining properties of these classes involves pure state extensions, a topic that has seen a great deal of interest since the Kadison-Singer Problem was first introduced half a century ago. This proposal seeks to further investigate the relationship and parallels between pseudo-diagonals and the other special Cartan-like subalgebras, as well as to answer some related questions about state extensions. On the other hand, one can define a shift space from a directed graph. The investigator intends to analyze the corresponding graph algebras in order to shed light on the famous Williams Conjecture of symbolic dynamics. This conjecture, which asserted that the notion of matrix shift equivalence was a complete invariant for topological conjugacy, was disproved by Kim-Roush and Wagoner in 1997. Their work leaves open many questions and lines of enquiry. Graph algebras have been studied since the early 1980s and appear in many areas of the field of operator algebras. The theory of Cartan subalgebras of C*-algebras is an area with much potential, as Renault's definition and major results on the subject appeared only two years ago. The topological conjugacy problem is fundamental to the area of symbolic dynamics and has been studied by a large number of experts; any progress on this problem will be a breakthrough, and the investigator's operator-algebraic approach is new. Both parts of this research project will have broader impacts both within the investigator's institution and in the mathematical community as a whole. The investigator is a member of a mathematics department with a strong commitment to mentoring graduate and undergraduate students. She is actively involved in a number of activities, such as coordinating a math subject GRE preparation workshop and running a seminar aimed at graduate students. The investigator will supervise an undergraduate and a graduate summer research project on work related to this proposal. Finally, the investigator's publications and lectures at conferences on this research will strengthen the bridge between dynamics and operator algebras and foster communication between the specialists in these fields.
图代数在算子代数和动力系统领域之间提供了一个迷人的联系。拟议的研究从两个不同的方向探索了这种联系。图代数是由Cuntz和Krieger在1980年引入的,已经以各种方式进行了推广和扩展,以组成大量有趣的C*-代数。这位研究者和他的合作者Gabriel Nagy最近发现了广义康茨-克里格唯一性定理的新证明。这项工作导致他们发现了一类C*-子代数,伪对角线。这些类的定义属性之一涉及纯状态扩展,自半个世纪前首次引入Kadison-Singer问题以来,这个主题就引起了极大的兴趣。本文旨在进一步探讨伪对角线与其他特殊类cartan子代数之间的关系和相似之处,并回答有关状态扩展的一些相关问题。另一方面,我们可以从有向图中定义移位空间。为了阐明著名的符号动力学的威廉姆斯猜想,研究者打算分析相应的图代数。这个猜想断言矩阵位移等价的概念是拓扑共轭的完全不变量,在1997年被Kim-Roush和Wagoner推翻。他们的工作留下了许多问题和探索的线索。图代数自20世纪80年代初开始被研究,并出现在算子代数领域的许多领域。C*-代数的Cartan子代数理论是一个非常有潜力的领域,因为雷诺在这个主题上的定义和主要成果仅在两年前才出现。拓扑共轭问题是符号动力学领域的基础问题,已被大量专家研究。在这个问题上的任何进展都将是一个突破,研究者的算子-代数方法是新的。这个研究项目的两个部分将在研究者所在的机构和整个数学界产生更广泛的影响。研究者是数学系的一员,致力于指导研究生和本科生。她积极参与了许多活动,如协调数学科目GRE准备研讨会和举办针对研究生的研讨会。研究者将指导一名本科生和一名研究生进行与本提案相关的暑期研究项目。最后,研究者的出版物和在会议上的演讲将加强动力学和算子代数之间的桥梁,促进这些领域的专家之间的交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Reznikoff其他文献
Abelian core of graph algebras
图代数的阿贝尔核心
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. Nagy;Sarah Reznikoff - 通讯作者:
Sarah Reznikoff
A generalized Cuntz-Krieger uniqueness theorem for higher rank graphs
高阶图的广义 Cuntz-Krieger 唯一性定理
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Brown;G. Nagy;Sarah Reznikoff - 通讯作者:
Sarah Reznikoff
Hilbert space representations of the annular temperley-lieb algebra
环形templey-lieb代数的希尔伯特空间表示
- DOI:
10.2140/pjm.2006.228.219 - 发表时间:
2006 - 期刊:
- 影响因子:0.6
- 作者:
V. Jones;Sarah Reznikoff - 通讯作者:
Sarah Reznikoff
Cartan Subalgebras in C*-Algebras of Haus dorff étale Groupoids
Haus doff étale Groupoids 的 C*-代数中的嘉当子代数
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jonathan H. Brown;Gabriel Nagy;Sarah Reznikoff;Aidan Sims;Dana P. Williams - 通讯作者:
Dana P. Williams
Intermediate C*-algebras of Cartan embeddings
Cartan 嵌入的中级 C* 代数
- DOI:
10.1090/bproc/66 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Brown;R. Exel;Adam H. Fuller;D. Pitts;Sarah Reznikoff - 通讯作者:
Sarah Reznikoff
Sarah Reznikoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Reznikoff', 18)}}的其他基金
Operator Algebras Summer School at the University of Ottawa
渥太华大学算子代数暑期学校
- 批准号:
2000352 - 财政年份:2020
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Great Plains Operator Theory Symposium 2014
2014年大平原算子理论研讨会
- 批准号:
1402509 - 财政年份:2014
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Finitely-generated modules over special biserial algebras: a combinatorial model using strips and belts
特殊双列代数上的有限生成模块:使用条带和带的组合模型
- 批准号:
2271342 - 财政年份:2019
- 资助金额:
$ 15.66万 - 项目类别:
Studentship
Characters of groups and algebras as special functions and their applications
作为特殊函数的群和代数的性质及其应用
- 批准号:
24740033 - 财政年份:2012
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Special Meeting: Torsors, Nonassociative algebras and Cohomological invariants Thematic Program at the Fields Institute Toronto January - June 2013
特别会议:Torsors、非结合代数和上同调不变量 多伦多菲尔兹研究所主题项目 2013 年 1 月至 6 月
- 批准号:
1222637 - 财政年份:2012
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Special Meetings: Annual Spring Institute in Noncommutative Geometry and Operator Algebras
特别会议:年度非交换几何和算子代数春季研究所
- 批准号:
0849242 - 财政年份:2009
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Special Meeting: Fields Operator Algebras Program--International US Participation
特别会议:场算子代数项目--美国国际参与
- 批准号:
0649696 - 财政年份:2007
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Special Meeting: Collaborative Research: Affine Hecke algebras, the Langlands Program, Conformal Field Theory and Matrix Models
特别会议:协作研究:仿射赫克代数、朗兰兹纲领、共形场论和矩阵模型
- 批准号:
0603329 - 财政年份:2006
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Generalized boson algebras : their properties and applications to mathematics and physics
广义玻色子代数:它们的性质及其在数学和物理中的应用
- 批准号:
15540132 - 财政年份:2003
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of algebraic groups, Hecke algebras and complex reflection groups
代数群的表示论、赫克代数和复反射群
- 批准号:
13440014 - 财政年份:2001
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Group Representations and Related Special Functions
群表示及相关特殊函数研究
- 批准号:
04640055 - 财政年份:1992
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Special Year of Lie Algebras
数学科学:李代数特别年
- 批准号:
8702928 - 财政年份:1987
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant