Studies on Group Representations and Related Special Functions
群表示及相关特殊函数研究
基本信息
- 批准号:04640055
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied various kind of special functions associated with aigebraic groups, Lie algebras, symmetric spaces, prehomogeneous spaces, Hecke algebras and so on, form the view point of representation theory. In the course of the research, many interesting results, some of which are related to number theory, or mathematical physics, are obtained.Kato studied Hecke algebras. First he showed how the "dual" of representations of Hecke algebras are given. Next, he constructed a new kind of R-matrix by using Hecke algebras, defined explicitly a quantum Knizhnik-Zamolodchikov equations, a system of q-difference equations, and showed certain relation between eigenfunctions of Macdonald's difference operators and our KZ-equations. Saito investigated the prehomogeneous vector spaces (PV) consisting of symmetric matrices from number theoretical view point. He determined the zeta function of these PV explicitly, and applied this result to the study of Siegel modular forms. Gyoja studied PV in connection with representations and D-modules. Particulary, he studies the relation between reducibility of generalized Verma modules and b-functions of PV.Matsuki investigated orbital decomposition of symmetric spaces and other similar spaces. This research is important in descriving representations geometrically. Nishiyama studied unitary representations of super Lie algebras, especially super version of the theory of dual pairs. Takasaki studies nonlinear integrable systems which appear in mathematical physics. He considered the symmetry hidden in these systems and investigated the relation between these symmetries and infinite dimensional Lie algebras, etc.
从表示论的角度出发,研究了代数群、李代数、对称空间、准齐次空间、Hecke代数等相关的各种特殊函数。在研究的过程中,许多有趣的结果,其中一些是有关数论,或数学物理,获得。加藤研究Hecke代数。首先,他展示了如何“双”的陈述Hecke代数。其次,他利用Hecke代数构造了一种新的R-矩阵,明确定义了量子Knizhnik-Zamolodchikov方程,一个q-差分方程组,并证明了Macdonald差分算子的本征函数与我们的KZ-方程之间的某些关系。Saito从数论的角度研究了由对称矩阵构成的准齐次向量空间。他明确地确定了这些PV的zeta函数,并将这一结果应用于西格尔模形式的研究。Gyoja研究PV与表示和D-模。特别是,他研究之间的关系约化的广义Verma模块和b-功能的PV.松木调查轨道分解的对称空间和其他类似的空间。这一研究对于几何描述具有重要意义。西山研究酉表示的超级李代数,特别是超级版本的理论对偶对。高崎研究数学物理中出现的非线性可积系统。他认为对称性隐藏在这些系统和调查之间的关系,这些对称性和无限维李代数等。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
高崎 金久: "Quasi-classical limit of BKP hierarchy and W-infinity symmetries" Letters in Math.Phys.28. 177-185 (1993)
Kanehisa Takasaki:“BKP 层次结构和 W 无穷对称性的准经典极限”Math.Phys.28 中的信件 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
松木 敏彦: "Orbits on flag manifolds" Proc.of ICM90. 807-813 (1992)
Toshihiko Matsuki:“旗流形上的轨道”Proc.of ICM90 (1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤 信一: "Duality for representations of a Hecke algebra" Proceedings of the American Mathematical Society. 119. 941-946 (1993)
Shinichi Kato:“Hecke 代数的对偶性”美国数学会论文集 119. 941-946 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Gyoja, Akihiko: "Further generalization of generalized Verma modules" Publ.RIMS, Kyoto Univ.29. 349-395 (1993)
Gyoja, Akihiko:“广义 Verma 模块的进一步概括”Publ.RIMS,Kyoto Univ.29。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
斎藤裕: "On L-functions associated with the vector space of binary quadratic forms" Nagoya Math.J.130. 149-176 (1993)
Yutaka Saito:“关于与二元二次型向量空间相关的 L 函数”Nagoya Math.J.130 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Shin-ichi其他文献
KATO Shin-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Shin-ichi', 18)}}的其他基金
Representation Theory of Symmetric Spaces over Finite or Local Fields
有限域或局部域上对称空间的表示论
- 批准号:
22540017 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory of Symmetric Spaces over Finite or Local Fields
有限域或局部域上对称空间的表示论
- 批准号:
18540026 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theoretic research of spherical functions on p-adic homogeneous spaces
p进齐次空间上球函数的表示理论研究
- 批准号:
15540022 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
- 批准号:
22KJ0912 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
- 批准号:
23K03063 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
- 批准号:
23H01068 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
- 批准号:
RGPIN-2019-03984 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Postdoctoral Fellowships
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
- 批准号:
2245935 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
- 批准号:
22K03299 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual