Generalized boson algebras : their properties and applications to mathematics and physics
广义玻色子代数:它们的性质及其在数学和物理中的应用
基本信息
- 批准号:15540132
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purposes of this research project are three fold. Firstly, seeking possibilities of generalizing the boson algebra in the framework of Hopf algebra. Secondly, investigating properties of the generalized boson algebras. Then, applying the generalized boson algebras to some mathematical or physical problems. One of the generalized boson algebras, already known, is regarded as bosonization of the quantum algebra U_q[osp(1/2)]. We, thus, started our investigation with the algebra (denoted by U) and U_q[osp(1/2)]. The main results of the present research are summarized as follows.1.The algebra dual to U was obtained. The duality is expressed in the form of universal T-matrix.2.The single-particle and bipartite coherent states for U were constructed. It was shown that the bipartite coherent state had entanglement which disappears in the classical limit. An analytic proof of orthogonality and completeness for the single-particle coherent state was given.3.Irreducible representations of th … More e algebra dual to U were obtained explicitly and it was shown that the representation matrices are related to little q-Jacobi polynomials.4.Tensor product of the representations of U is decomposed into irreducible ones. It was shown that the decomposition was carried out with q-Hahn polynomials. The result No.3 and 4 imply that the algebra U gives a new algebraic background for basic hypergeometri functions.5.A general method for constructing noncommutative space with supersymmetric nature, which means that the space is covariant under the action of quantum group OSp_q(1/2), was introduced. By the method, 3-dimensional noncommutative flat superspace and 5-dimensional noncommutative supersphere were constructed and their properties, as well as relations to boson algebras, were studied.6.Differential geometry on noncommutative spaces has been developed by Dubois-Viollete et al. In this research, the geometry was extended to noncommutative superspaces. As an example, covariant derivative, curvature etc on 3-dimensional noncommutative superspace, which is a covariant algebra of the Jordanian quantum group OSp_h(1/2), were computed. The computation shows that the superspace is not physical, since the covariant derivative is not compatible with the metric. Less
这个研究项目的目的有三个方面。第一,在Hopf代数的框架下寻求推广玻色子代数的可能性。其次,研究了广义玻色子代数的性质。然后,将广义玻色子代数应用于一些数学或物理问题。已知的广义玻色子代数之一被认为是量子代数U_q[osp(1/2)]的玻色子化。因此,我们从代数(记为U)和U_q[osp(1/2)]开始研究。本文的主要研究成果如下:1.得到了U的对偶代数。构造了U的单粒子相干态和二体相干态。结果表明,两体相干态存在纠缠,但在经典极限下纠缠消失。给出了单粒子相干态的正交性和完备性的解析证明 ...更多信息 e代数的对偶,并证明其表示矩阵与小q-Jacobi多项式有关。4.将U的表示的张量积分解为不可约的张量积。结果表明,分解是用q-Hahn多项式进行的。结果3和4表明,代数U为基本超几何函数提供了新的代数背景。5.给出了构造具有超对称性质的非对易空间的一般方法,即在量子群OSp_q(1/2)作用下空间是协变的。利用这种方法,构造了三维非对易平坦超空间和5维非对易超球,并研究了它们的性质以及与玻色子代数的关系。6.非对易空间上的微分几何是由Dubois-Viollete等人发展起来的,本文将微分几何推广到非对易超空间上。作为例子,计算了Jordan量子群OSph(1/2)的协变代数--三维非对易超空间上的协变导数、曲率等.计算表明,超空间不是物理的,因为协变导数与度量不相容。少
项目成果
期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Confidence regions for the mean direction of the von Mises-Fisher distribution
von Mises-Fisher 分布平均方向的置信区域
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;T.Fujioka
- 通讯作者:T.Fujioka
Coring structures associated with multip licative unitary operators on Hilbert C^*-modules
与希尔伯特 C^* 模上的乘法酉算子相关的核心结构
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;T.Fujioka;M.O'uchi;Kouyemon Iriye;M.O'uchi
- 通讯作者:M.O'uchi
Generalized boson algebra and its entangled bipartite coherent states
广义玻色子代数及其纠缠二部相干态
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:N.Aizawa;R.Chakrabarti;J.Segar
- 通讯作者:J.Segar
Noncommutative geometry of super-Jordanian OSp_h(2/1) covariant quantum space
超乔丹OSp_h(2/1)协变量子空间的非交换几何
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Aizawa;R.Chakrabarti
- 通讯作者:R.Chakrabarti
Improved likelihood ratio and score tests on concentration parameters of von Mises--Fisher distributions
von Mises-Fisher 分布浓度参数的改进似然比和得分检验
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Watamori;P.E.Jupp
- 通讯作者:P.E.Jupp
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIZAWA Naruhiko其他文献
AIZAWA Naruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIZAWA Naruhiko', 18)}}的其他基金
Representation theories of conformal Galilei algebras and their applications to orthogonal polynomials and quantum many-body systems
共形伽利略代数表示论及其在正交多项式和量子多体系统中的应用
- 批准号:
23540154 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supersymmetric noncommutative geometry and quantum physics
超对称非交换几何和量子物理
- 批准号:
18540380 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
- 批准号:
RGPIN-2020-04230 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
- 批准号:
RGPIN-2018-05821 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
- 批准号:
RGPIN-2017-06543 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Algebras with action and coaction of Hopf algebras
具有 Hopf 代数作用和相互作用的代数
- 批准号:
RGPIN-2018-04883 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
- 批准号:
RGPIN-2017-06543 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
- 批准号:
RGPIN-2018-05821 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




