Molecularly Engineered Artificial Nanopores with Differential Selectivity and Sensitivity

具有差异选择性和灵敏度的分子工程人工纳米孔

基本信息

  • 批准号:
    1201878
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-03-15 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

Objectives: This proposal addresses a number of fundamental and important obstacles that have limited the utility of nanopore sensing technology. Specifically, nanopore size, surface composition and stability of the pores are addressed to broaden this technology to include important new areas, e.g. sequencing of genomes, as but one of many examples. To help expedite progress in this area, our objective involves fabrication and thorough evaluation of a new approach to nanopore sensor technology. Specifically, we propose construction of artificial pores in which both the size and surface chemistry of the pores are precisely controlled over a wide range of pore sizes. For this purpose, a novel combination of thermal processing, followed by pulsed plasma chemical vapor deposition, will be used to shrink pore sizes controllably and reproducibly, while simultaneously varying surface chemistry. Availability of these molecularly engineered nanopores will hopefully overcome limitations currently encountered in analytical applications of this technology. An additional important objective involves extension of this technology to several new, high profile applications to be made available via our approach, e.g., selective differential detection by two oppositely chirally functionalized nanopores which will revolutionize chromatographic measurement of chiral compounds; similar schemes will be possible in many other cases.Intellectual Merits of the Proposed Activity? To date, nanopore fabrication has focused primarily on low-throughput serial approaches, with little use of bottom-up technology. In general, key issues such as stability of nanopore/fluid interfaces, reproducibility of nanopore surface properties, extended pore stability and the need for robust chemical functionalization of the nanopores remain. The ready availability of mechanically stable nanopores, having a range of well-defined diameters and surface chemistries, as described in this proposal, represents a transformative advance in this area. New insights will be gained from selective interactions in nanopores, providing quantitative handles to evaluate the molecular responses of ligands and to define novel, chemical means of interrogating targeted analytes. This will stimulate additional studies: control of translocation times of analytes through the pores (an immensely important present problem) and the use of chemistry and size differentiated nanopore arrays. This innovation will also help overcome and replace the present labor-intensive and low-throughput fabrication methods. Broader Impacts of the Proposed Activity? The proposed project will impact many areas that depend on the confluence of sciences and engineering. Examples include design of bio-inspired systems, sensors for environment and living systems, etc. The basic principles involved can be integrated into all levels of education. Graduate and undergraduate (UG) students will be engaged and introduced to exciting new dimensions of analytical chemistry, biochemistry and solid-state fabrication through development of a cross-listed course module on the bio-nano interface. The research outcomes will be also used to develop integrative participatory modules at our presently conducted Summer Camps (for middle/high-school students) and Girlgeneering Camps (for female high school students) to attract future adults to STEM careers. These outreach endeavors will be pursued: (1) Seminars/lab-tours for involvement and retention of UGs in research; (2) Engaging minority students through the McNair Fellows program; (3) Dynamic Facebook presence for the projection/exposure/discussion of the research; (4) Engagement of K-12 students and teachers through live webcasts. The results of the proposed research and education endeavors will be disseminated not only through peer-reviewed articles and conferences, but also through public media (radio, newspaper, weblogs, public displays). UTA Chemistry participates in the local State Fair. UTA has the largest digital planetarium in the Metroplex, with extremely heavy K-12 traffic. We plan to develop a small clip on nanopore sensors.
目的: 该提案解决了一些限制纳米孔传感技术实用性的基本和重要障碍。 具体地,纳米孔尺寸、表面组成和孔的稳定性被解决以拓宽该技术以包括重要的新领域,例如基因组测序,作为许多示例中的一个。为了帮助加快这一领域的进展,我们的目标涉及制造和彻底评估纳米孔传感器技术的新方法。具体而言,我们提出了人工孔的建设,其中孔的大小和表面化学精确控制在很宽的孔径范围内。为此目的,一种新的组合的热处理,然后脉冲等离子体化学气相沉积,将用于收缩孔径可控和可再现的,同时改变表面化学。 这些分子工程纳米孔的可用性将有望克服目前在该技术的分析应用中遇到的限制。另一个重要的目标是将这项技术扩展到几个新的,高知名度的应用程序,通过我们的方法,例如,通过两个相反的手性功能化纳米孔的选择性差分检测,这将彻底改变手性化合物的色谱测量;类似的方案将在许多其他情况下是可能的。 迄今为止,纳米孔制造主要集中在低通量串行方法上,很少使用自下而上技术。一般来说,关键问题,如纳米孔/流体界面的稳定性,纳米孔表面性质的再现性,扩展的孔稳定性和需要的纳米孔的强大的化学功能化仍然存在。如本提案中所述,具有一系列明确定义的直径和表面化学性质的机械稳定的纳米孔的现成可用性代表了该领域的变革性进展。新的见解将从纳米孔中的选择性相互作用中获得,提供定量处理来评估配体的分子响应,并定义询问目标分析物的新型化学手段。这将刺激更多的研究:控制分析物通过孔的移位时间(目前非常重要的问题)以及使用化学和大小差异化的纳米孔阵列。 这一创新也将有助于克服和取代目前劳动密集型和低产量的制造方法。拟议活动的更广泛影响?拟议的项目将影响许多依赖于科学和工程融合的领域。 例子包括生物启发系统的设计,环境和生命系统的传感器等,所涉及的基本原理可以融入各级教育。 研究生和本科生(UG)的学生将通过开发生物纳米界面上的交叉列出的课程模块,参与并介绍分析化学,生物化学和固态制造的令人兴奋的新维度。 研究成果还将用于在我们目前开展的夏令营(初中/高中学生)和Girlgeneering夏令营(女高中生)中开发综合参与模块,以吸引未来的成年人从事STEM职业。 这些推广工作将继续进行:(1)研讨会/实验室参观参与和保留研究的大学生;(2)通过麦克奈尔研究员计划吸引少数民族学生;(3)动态Facebook存在的投影/曝光/讨论的研究;(4)通过网络直播的K-12学生和教师的参与。 拟议的研究和教育工作的结果将不仅通过同行评议的文章和会议,而且通过公共媒体(广播、报纸、博客、公共展示)传播。 UTA化学参加当地的州博览会。 UTA拥有Metroplex中最大的数字天文馆,K-12交通非常繁忙。 我们计划在纳米孔传感器上开发一个小夹子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samir Iqbal其他文献

Samir Iqbal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samir Iqbal', 18)}}的其他基金

Samir Iqbal IPA Agreement
萨米尔·伊克巴尔 IPA 协议
  • 批准号:
    2149901
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Intergovernmental Personnel Award
Collaborative Research: Functionalized Nano-textured Surfaces to Isolate and Identify Bladder Cancer Cells
合作研究:功能化纳米纹理表面分离和鉴定膀胱癌细胞
  • 批准号:
    1407990
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Nanoelectronic Microfluidic Biochip for Ultrasensitive Detection of Selective Protein Biomarkers
职业:用于选择性蛋白质生物标志物超灵敏检测的纳米电子微流控生物芯片
  • 批准号:
    0845669
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

CREST HBCU-RISE: Engineered Renal Tissue using an Artificial Intelligence-Driven Approach
CREST HBCU-RISE:使用人工智能驱动的方法设计肾组织
  • 批准号:
    2332041
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Microfluidic Precision Engineered Artificial Antigen Presenting Cells for Cancer Immunotherapy
用于癌症免疫治疗的微流控精密工程人工抗原呈递细胞
  • 批准号:
    10696138
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Artificial metalloenzymes engineered from non-heme enzymes
由非血红素酶改造而成的人工金属酶
  • 批准号:
    2424538
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Development of Tissue-Engineered Artificial Ligament made from Ligament Matrix
由韧带基质制成的组织工程人工韧带的开发
  • 批准号:
    19K20695
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
  • 批准号:
    10024070
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
  • 批准号:
    10162386
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
Materially Engineered Artificial Pollinators
材料工程人工授粉器
  • 批准号:
    16K13632
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Artificial photosynthesis devices using polarization-engineered nitride semiconductors for visible-light response and high durability
使用偏振工程氮化物半导体的人工光合作用装置,具有可见光响应和高耐用性
  • 批准号:
    15H02238
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a Y-shaped tissue-engineered artificial trachea for carinal reconstruction.
开发用于隆突重建的 Y 形组织工程人工气管。
  • 批准号:
    25253082
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Application of in-body tissue-engineered heart valve (biovalve) to total artificial heart
体内组织工程心脏瓣膜(生物瓣膜)在全人工心脏中的应用
  • 批准号:
    25670603
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了