Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
基本信息
- 批准号:10024070
- 负责人:
- 金额:$ 56.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D Print4D MRIAcuteAdultAlgorithm DesignAlgorithmsAnatomyAnimalsAortaArtificial IntelligenceBlood CirculationBlood VesselsCardiovascular systemCaringCause of DeathChildhoodClinicComplexComputer-Aided DesignComputersConsumptionCustomDataDescending aortaEnsureExperimental Animal ModelFDA approvedFutureGeometryGoalsGrowthHealthHistologicHypertensionImageImplantIn VitroInferior vena cava structureLeadLiquid substanceLongevityMagnetic Resonance ImagingManualsMeasurementMeasuresMetalsMethodsModelingMolecularMorbidity - disease rateOperative Surgical ProceduresOrganPatient CarePatientsPerformancePhysiologicalPostoperative PeriodProcessQuality of lifeRouteSafetyShapesSheepSourceStructureSurgical ManagementTechnologyTimeTissue EngineeringTissuesTranslatingVascular GraftVenousVentricular DysfunctionWorkaortic archbaseclinical applicationcongenital anomalycongenital heart disordercostdesignexperiencehemodynamicsimplantationimprovedin vitro testingin vivointelligent algorithmmechanical propertiesmodel designmortalitynanofibernovelpediatric patientsperformance testspreservationpressurereconstructionrepairedresponsescaffoldshear stresssurgery outcomevascular tissue engineering
项目摘要
1 The goal of this study is to create patient-specific, hemodynamically optimized, tissue engineered
2 vascular grafts (TEVG) for use in aortic arch repair surgery. These TEVGs are optimized for high pressure
3 circulation using 3D printing technology and artificial intelligence, and will grow with the patient, in hopes of
4 obviating need for future surgeries to replace grafts, which can occur with contemporary arch reconstruction
5 materials. Congenital heart disease (CHD) is the leading cause of death due to congenital anomalies. Despite
6 significant advances in surgical management for CHD, one significant source of morbidity and mortality arises
7 from the complexity of surgery for diverse anatomies in the aortic arch. Previous studies have demonstrated
8 that the resultant arch geometry after surgical reconstruction of stenotic or hypoplastic aortas is important to
9 minimize reduce energy loss and undesirable flow inside the arch, which can lead to hypertension, abnormal
10 vascular response and ventricular dysfunction. Ensuring a patient-specific graft design for ideal reconstructed
11 route before surgery with minimum energy loss and wall shear stress may yield long-term benefits for patient
12 health and quality of life.
13 We have demonstrated native vessel like neotissue formation of TEVG in small and large animal
14 studies. Based on these experiences, we have developed a novel 3D printing technology combining 3D printed
15 metal mandrels with nanofiber electro-spun technology. With this 3D printing technology, we showed that
16 TEVG developed native like neovessel formation in venous circulation in a sheep model. For this next step, we
17 aim to develop grafts in arterial circulation that can be applied to aortic reconstruction. We will also develop
18 automatic design algorithms to design optimal graft shape in order to reduce time and cost of patient specific
19 design. We hypothesize that patient-specific TEVG using our 3D printing technology can be designed,
20 aided by pre-operative imaging and flow data, computer assisted design (CAD), automatic design
21 algorithms based on computation fluid dynamics (CFD) results, and will demonstrate proper neotissue
22 formation and growth while maintaining optimally designed hemodynamics.
23 This project will be an important step towards clinical application of patient-specific vascular grafts that
24 recapitulate the native anatomy and mechanical properties. The results of this work will have a broader impact
25 on the design and fabrication of other more complex cardiovascular structures for implantation. This paradigm
26 shift in vascular graft technology will improve the quality and safety of pediatric patient care.
本研究的目标是创建针对患者的、血流动力学优化的组织工程
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Fuge其他文献
Mark Fuge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Fuge', 18)}}的其他基金
Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
- 批准号:
10608711 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
- 批准号:
10162386 - 财政年份:2018
- 资助金额:
$ 56.83万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10390378 - 财政年份:2015
- 资助金额:
$ 56.83万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10211359 - 财政年份:2015
- 资助金额:
$ 56.83万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10561704 - 财政年份:2015
- 资助金额:
$ 56.83万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 56.83万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 56.83万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 56.83万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 56.83万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant