Topics in Computable Structure Theory

可计算结构理论专题

基本信息

  • 批准号:
    1202328
  • 负责人:
  • 金额:
    $ 13.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

Harizanov and her students and their collaborators investigate algorithmic properties of general and concrete mathematical structures arising in algebra, model theory, and topology. This requires intricate interplay of computability theory with algebra, topology, and geometry. Harizanov?s goal is to understand the computability theoretic properties of countable structures and their isomorphisms, and of natural relations on the domains of the structures. She studies the connections between definability and computability. The Turing degree spectra of structures can be related to the degree spectra of relations via spectrally universal structures, which are often obtained as Fraisse limits. Harizanov?s project includes model-theoretic complexity of computable structures measured by their Scott rank. It also includes classification problems such as the isomorphism problem and the embedding problem for natural classes of algebraic structures. Harizanov studies the left orders and bi-orders of various torsion-free groups, including free groups, surface and braid groups, and how the topological properties of the spaces of orders relate to the computability-theoretic properties of orders. The project involves important new directions in computable structure theory, including the study of Turing degrees of the isomorphism types of geometric objects, such as varieties and schemes, and of structures with a nonassociative binary operation of importance in low-dimensional topology, such as quandles. Computable structure theory is a very active research area that has blossomed in the last few decades. It is of importance in theoretical mathematics and computer science and in the philosophy of mathematics. Some mathematical constructions are essentially nonalgorithmic, while the others are algorithmic, or can be replaced by algorithmic ones yielding the same results. Computability theory has developed powerful and unique techniques to further analyze and classify nonalgorithmic mathematical objects. Such methods involve syntactic descriptions using computable infinitary language, as well as Turing and other degree theoretic measures of relative computational complexity of sets and problems they encode.
哈里扎诺夫和她的学生以及他们的合作者研究了代数、模型论和拓扑学中产生的一般和具体数学结构的算法特性。这需要可计算性理论与代数、拓扑学和几何学之间复杂的相互作用。哈里扎诺夫?的目标是理解可数结构及其同构的可计算性理论性质,以及结构域上的自然关系。她研究可定义性和可计算性之间的联系。结构的图灵度谱可以通过谱通用结构与关系的度谱相关,谱通用结构通常作为Fraisse极限获得。哈里扎诺夫?的项目包括可计算结构的模型理论复杂性,通过它们的斯科特等级来衡量。 它还包括分类问题,如同构问题和嵌入问题的自然类的代数结构。Harizanov研究了各种挠自由群的左序和双序,包括自由群、曲面和辫子群,以及序空间的拓扑性质如何与序的可计算性理论性质相关。该项目涉及可计算结构理论中重要的新方向,包括研究几何对象的同构类型的图灵度,如变种和方案,以及在低维拓扑中具有重要性的非关联二元运算的结构,如quandles。 可计算结构理论是一个非常活跃的研究领域,在过去的几十年里蓬勃发展。它在理论数学、计算机科学和数学哲学中具有重要意义。一些数学构造本质上是非算法的,而另一些则是算法的,或者可以被算法的构造所取代,从而产生相同的结果。 可计算性理论已经发展出强大而独特的技术来进一步分析和分类非算法的数学对象。这些方法涉及使用可计算无穷语言的语法描述,以及图灵和其他程度理论的相对计算复杂性的集合和问题,他们编码的措施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valentina Harizanov其他文献

Valentina Harizanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valentina Harizanov', 18)}}的其他基金

FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
  • 批准号:
    2152095
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant
Topics in Computable Mathematics
可计算数学主题
  • 批准号:
    0904101
  • 财政年份:
    2009
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant
Computability Theory and Algebraic Structures
可计算性理论和代数结构
  • 批准号:
    0704256
  • 财政年份:
    2007
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant
Computability Theory and Algebraic Structures
可计算性理论和代数结构
  • 批准号:
    0502499
  • 财政年份:
    2005
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Frequency Approach to Approximating Algorithms
数学科学:近似算法的频率方法
  • 批准号:
    9210443
  • 财政年份:
    1992
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Computable Lipschitz 归约在随机性及可计算性理论中的应用
  • 批准号:
    11201065
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Computable Lipschitz 归约下c.e.实数的性质
  • 批准号:
    11126055
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
  • 批准号:
    2348792
  • 财政年份:
    2024
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Standard Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
  • 批准号:
    24K20735
  • 财政年份:
    2024
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a computable general equilibrium model considering innovative carbon dioxide reduction technologies and the application of climate change policy assessment
考虑创新的二氧化碳减排技术和气候变化政策评估的应用,开发可计算的一般均衡模型
  • 批准号:
    22KJ1905
  • 财政年份:
    2023
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and Validation of an Equitable Computable Phenotype for Classifying Pediatric Sleep Deficiency in Electronic Health Records
开发和验证电子健康记录中儿童睡眠不足分类的公平可计算表型
  • 批准号:
    10724442
  • 财政年份:
    2023
  • 资助金额:
    $ 13.36万
  • 项目类别:
Transfer learning to improve the re-usability of computable biomedical knowledge
迁移学习提高可计算生物医学知识的可重用性
  • 批准号:
    10597207
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
Studies for the Wider Economic Benefits by Spatial Computable General Equilibrium
通过空间可计算一般均衡研究更广泛的经济效益
  • 批准号:
    22K01443
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on convergence rate of weakly computable reals
弱可计算实数收敛速度研究
  • 批准号:
    22K03408
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transfer learning to improve the re-usability of computable biomedical knowledge
迁移学习提高可计算生物医学知识的可重用性
  • 批准号:
    10589998
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
Computable General Equilibrium (CGE) Analysis of Global Supply Chains
全球供应链的可计算一般均衡 (CGE) 分析
  • 批准号:
    22K01464
  • 财政年份:
    2022
  • 资助金额:
    $ 13.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computable social factor phenotyping using EHR and HIE data
使用 EHR 和 HIE 数据进行可计算的社会因素表型分析
  • 批准号:
    10341453
  • 财政年份:
    2021
  • 资助金额:
    $ 13.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了