Study of random motion in random environment, and random matrix theory
随机环境中的随机运动和随机矩阵理论的研究
基本信息
- 批准号:1203201
- 负责人:
- 金额:$ 40.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research project is focused on the study of random matrices and random walks evolving in random media. Much of the existing theory of random matrices deals with normal matrices, which are stable under perturbations; many of the existing toolsimplicitly use either this stability, or some strong independence assumptions, even in deriving rough results. A major goal of the present proposal is to build on previous work of the PI and collaborators and develop techniques that work even in a context where both structural assumptions (normality or independence) fail. While the proposal discusses and addresses some very specific questions, it is part of a larger attempt to develop new techniques that would be applicable to a wide range of RMT questions. The second topic to be studied concerns random walks and branching processes in random environments. Though the theory of random walks is well developed, many gaps in understanding remain when one changes the medium in which the walk evolves to a random medium. In spite of rapid progress that was achieved in the last few years by several researchers, many fundamental questions remain unanswered. The proposed project will built on previous work, by the PI and other researchers, with the goal of resolving some of these outstanding questions.Matrices are the cornerstone of linear algebra, and are fundamental building blocks in operator theory. Random matrix theory (RMT) is concerned with the study of properties of random matrices, typically in the limit where the dimension of the matrix is large.Motivations and applications for this study come from several areas of mathematics (probability theory, number theory, representation theory), the physical sciences (especially, mathematical physics), statistics, and engineering (specifically, communication and information theories). In recent years, RMT has emerged as a major research area within mathematics, combining techniques from probability theory, operator algebras, complex analysis, and combinatorics. Several major (and fundamental) open questions have recently been resolved, especially concerning the universality of limit laws regarding the spectrum of large random matrices. The proposed research will seek to significantly expand the theory toward a class of matrices whose spectrum is not stable under (small) perturbations. While the focus of the research is theoretical, an impact on applications is expected, e.g. in evaluating the stability of complex systems, in computations related to quantum information theory, and in statistics. The second main focus of the study, random walks, are arguably the stochastic processes most studied by mathematicians, having the widest range of applications in fields as diverse as the physical sciences, engineering, and the social sciences. Though the theory of random walks is by now well developed, this is not at all the case when one changes the medium in which the walk evolves to a random medium, thus obtaining a random walk in random environment (RWRE). Such RWRE's can be used to model many problems of motion in random media in the physical and engineering sciences, and are mathematically appealing because on the one hand the model is very simply stated, while on the other hand established tools for studying processes in random media are not applicable in the study of RWRE. The goal of the current proposal is to develop new basic probabilistic techniques that will allow to make provable predictions concerning the behavior of RWRE. It is expected that such techniques will be useful in the study of other processes, and link naturally to the study of trapping models and reinforced random walks. While not explicitly targeted in this proposal, trapping models have recently been used to study the environmental impact of nuclear waste, and RWRE's can naturally be used in this context to model the spread of contamination in a real environment, once the required mathematical background and tools are in place.
拟议的研究项目侧重于研究随机矩阵和随机介质中演化的随机游走。许多现有的随机矩阵理论都涉及正态矩阵,这些矩阵在扰动下是稳定的。许多现有工具隐含地使用这种稳定性或一些强独立性假设,即使在得出粗略结果时也是如此。本提案的一个主要目标是建立在 PI 和合作者之前的工作基础上,开发即使在结构假设(正态性或独立性)都失败的情况下也能发挥作用的技术。虽然该提案讨论并解决了一些非常具体的问题,但它是开发适用于广泛的 RMT 问题的新技术的更大尝试的一部分。要研究的第二个主题涉及随机环境中的随机游走和分支过程。尽管随机游走理论已经很成熟,但当人们将游走演化为随机介质的媒介改变时,在理解上仍然存在许多差距。尽管一些研究人员在过去几年中取得了快速进展,但许多基本问题仍未得到解答。拟议的项目将建立在 PI 和其他研究人员之前的工作基础上,目标是解决其中一些悬而未决的问题。矩阵是线性代数的基石,也是算子理论的基本构建模块。随机矩阵理论(RMT)涉及随机矩阵性质的研究,通常是在矩阵维数较大的情况下进行的。这项研究的动机和应用来自数学(概率论、数论、表示论)、物理科学(特别是数学物理)、统计学和工程学(特别是通信和信息论)的多个领域。近年来,RMT 已成为数学领域的一个主要研究领域,它结合了概率论、算子代数、复分析和组合学的技术。 最近解决了几个主要(和基本)的开放问题,特别是关于大型随机矩阵谱的极限定律的普遍性。拟议的研究将寻求将该理论显着扩展到一类在(小)扰动下频谱不稳定的矩阵。虽然研究的重点是理论上的,但预计会对应用产生影响,例如评估复杂系统的稳定性、与量子信息理论相关的计算以及统计学。该研究的第二个主要焦点是随机游走,它可以说是数学家研究最多的随机过程,在物理科学、工程和社会科学等不同领域具有最广泛的应用。虽然随机游走的理论现在已经很发达,但是当我们将游走演化的介质改变为随机介质,从而获得随机环境中的随机游走(RWRE)时,情况就完全不是这样了。这种 RWRE 可用于模拟物理和工程科学中随机介质中的许多运动问题,并且在数学上很有吸引力,因为一方面该模型非常简单,而另一方面用于研究随机介质中的过程的既定工具不适用于 RWRE 的研究。当前提案的目标是开发新的基本概率技术,以便对 RWRE 的行为做出可证明的预测。预计此类技术将在其他过程的研究中有用,并自然地与捕获模型和强化随机游走的研究联系起来。虽然该提案没有明确针对的目标,但捕获模型最近已被用于研究核废料对环境的影响,一旦所需的数学背景和工具到位,RWRE 自然可以在这种情况下用于模拟真实环境中的污染扩散。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maury Bramson其他文献
Occupation time large deviations of the voter model
- DOI:
10.1007/bf00319297 - 发表时间:
1988-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Maury Bramson;J. Theodore Cox;David Griffeath - 通讯作者:
David Griffeath
The survival of branching annihilating random walk
- DOI:
10.1007/bf00535338 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Maury Bramson;Lawrence Gray - 通讯作者:
Lawrence Gray
Asymptotic independence of queues under randomized load balancing
- DOI:
10.1007/s11134-012-9311-0 - 发表时间:
2012-06-06 - 期刊:
- 影响因子:0.700
- 作者:
Maury Bramson;Yi Lu;Balaji Prabhakar - 通讯作者:
Balaji Prabhakar
Consolidation rates for two interacting systems in the plane
- DOI:
10.1007/bf00324856 - 发表时间:
1986-11-01 - 期刊:
- 影响因子:1.600
- 作者:
Maury Bramson;J. Theodore Cox;David Griffeath - 通讯作者:
David Griffeath
Positive recurrence for reflecting Brownian motion in higher dimensions
- DOI:
10.1007/s11134-011-9211-8 - 发表时间:
2011-02-08 - 期刊:
- 影响因子:0.700
- 作者:
Maury Bramson - 通讯作者:
Maury Bramson
Maury Bramson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maury Bramson', 18)}}的其他基金
Asymptotics for Queueing Networks, Branching Random Walks, and Interacting Particle Systems
排队网络、分支随机游走和交互粒子系统的渐近
- 批准号:
1105668 - 财政年份:2011
- 资助金额:
$ 40.05万 - 项目类别:
Standard Grant
Collaborative Research: Flow level models and the design of flow-aware networks
协作研究:流级模型和流感知网络的设计
- 批准号:
0729537 - 财政年份:2007
- 资助金额:
$ 40.05万 - 项目类别:
Standard Grant
Limiting Behavior of Queueing Networks and Interacting Particle Systems
限制排队网络和交互粒子系统的行为
- 批准号:
0226245 - 财政年份:2002
- 资助金额:
$ 40.05万 - 项目类别:
Continuing Grant
Asymptotic Behavior of Queueing Networks and Interacting Particle Systems
排队网络和交互粒子系统的渐近行为
- 批准号:
9971248 - 财政年份:1999
- 资助金额:
$ 40.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Queueing Networks
数学科学:相互作用的粒子系统和排队网络
- 批准号:
9796187 - 财政年份:1997
- 资助金额:
$ 40.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Queueing Networks
数学科学:相互作用的粒子系统和排队网络
- 批准号:
9626196 - 财政年份:1996
- 资助金额:
$ 40.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Evolution of Interacting Particle Systems
数学科学:相互作用粒子系统的演化
- 批准号:
8901545 - 财政年份:1989
- 资助金额:
$ 40.05万 - 项目类别:
Continuing Grant
The Asymptotic Behavior of a Cancer Model Where Recovery is Allowed
允许恢复的癌症模型的渐近行为
- 批准号:
7901964 - 财政年份:1979
- 资助金额:
$ 40.05万 - 项目类别:
Standard Grant
相似国自然基金
大Peclect数多粒径分布球形多孔介质内流动、传质和反应特性的研究
- 批准号:21276256
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
不经意传输协议中的若干问题研究
- 批准号:60873041
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
- 批准号:60573142
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
利用逆转录病毒siRNA随机文库在Hela细胞中批量获得TRAIL凋亡通路相关功能基因的研究
- 批准号:30400080
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 40.05万 - 项目类别:
Utilizing head motion measurements integrated with clinical outcomes to inform post-concussion return to play protocols in gymnastics
利用头部运动测量与临床结果相结合,为体操中脑震荡后恢复比赛方案提供信息
- 批准号:
10570943 - 财政年份:2022
- 资助金额:
$ 40.05万 - 项目类别:
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 40.05万 - 项目类别:
Discovery Grants Program - Individual
Simplifying PrEP delivery: One-stop service pathway to improve PrEP care efficiency and continuation in Kenya
简化 PrEP 交付:提高肯尼亚 PrEP 护理效率和持续性的一站式服务途径
- 批准号:
10688130 - 财政年份:2022
- 资助金额:
$ 40.05万 - 项目类别:
A PILOT TRIAL OF TELEHEALTH ACTIVE VIDEO GAMING USING IMMERSIVE VIRTUAL REALITY ON CARDIOMETABOLIC HEALTH AMONG YOUTH WITH CEREBRAL PALSY
利用沉浸式虚拟现实进行远程健康主动视频游戏对脑瘫青少年心脏代谢健康的试点试验
- 批准号:
10580721 - 财政年份:2022
- 资助金额:
$ 40.05万 - 项目类别:
Growth and Motion in a Random Medium
随机介质中的生长和运动
- 批准号:
2152362 - 财政年份:2022
- 资助金额:
$ 40.05万 - 项目类别:
Standard Grant
Efficacy of balance training with intermittent sensory perturbations
间歇性感觉扰动平衡训练的功效
- 批准号:
10909784 - 财政年份:2021
- 资助金额:
$ 40.05万 - 项目类别:
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 40.05万 - 项目类别:
Discovery Grants Program - Individual
Multimodal Sensing Guidewire with Random Optical Gratings by Ultraviolet laser Exposure for Peripheral Vascular Interventions
带有随机光栅的多模态传感导丝,通过紫外激光照射进行外周血管干预
- 批准号:
434033 - 财政年份:2020
- 资助金额:
$ 40.05万 - 项目类别:
Operating Grants
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2020
- 资助金额:
$ 40.05万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




