RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO

RUI:LIGO 的参数估计、数据分析和探测器表征

基本信息

  • 批准号:
    1204371
  • 负责人:
  • 金额:
    $ 18.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The research program at Carleton has a history of applying novel statistical strategies for parameter estimation and the analysis of data from LIGO. The Carleton team and its collaborators have made significant progress in developing methods for binary inspiral gravitational wave event detection. The group's on-going research is in the development of programs for even more complex binary inspiral signals, including the plunge, and the ringing of the newly formed black hole as well as supernova produced signals. When detection occurs, parameter estimation will provide the path toward astrophysics, and the Carleton-developed routines will be critical in that task. Additionally, the Carleton group searches for sources of noise that produce deleterious effects. Carleton develops vetoes for binary inspiral-like events produced by local environmental or detector disturbances; the group also assists the European Virgo detector in their burst and binary inspiral veto development, and will continue to do so with Advanced Virgo. Carleton is a leader in producing future scientists. This project will provide research opportunities to students with interests in physics and statistics, and help to train them to become the next generation of scientists. Carleton students are eager to participate in exciting research, and their interest in gravitational wave astronomy is large. The computational methods developed by the PI and collaborators have had significant influence in other fields, with applications in cosmic microwave background analyses, noisy chaotic systems, and proposed space-based gravitational wave detectors. Carleton faculty, including the PI, are also active in scientific outreach. High school students and teachers are regularly exposed to the wonder and significance of LIGO's research, and this outreach creates much excitement for science.
卡尔顿的研究项目在应用新颖的统计策略进行参数估计和LIGO数据分析方面有着悠久的历史。卡尔顿团队及其合作者在开发双激发引力波事件探测方法方面取得了重大进展。该小组正在进行的研究是开发更复杂的双星激励信号的程序,包括暴跌,新形成的黑洞的铃声以及超新星产生的信号。当探测发生时,参数估计将为天体物理学提供路径,而卡尔顿开发的例程将在这项任务中至关重要。此外,卡尔顿小组寻找产生有害影响的噪声源。卡尔顿发展了由局部环境或探测器扰动产生的二元类吸气事件的否定词;该小组还协助欧洲处女座探测器在他们的爆发和二进制灵感否决的发展,并将继续这样做与先进处女座。卡尔顿大学在培养未来科学家方面处于领先地位。该项目将为对物理和统计学感兴趣的学生提供研究机会,帮助他们成为下一代科学家。卡尔顿的学生渴望参与激动人心的研究,他们对引力波天文学的兴趣很大。PI及其合作者开发的计算方法在其他领域具有重大影响,应用于宇宙微波背景分析,嘈杂混沌系统和拟议的天基引力波探测器。卡尔顿大学的教职员工,包括PI,也积极参与科学推广活动。高中学生和老师经常接触到LIGO研究的奇迹和意义,这种延伸为科学创造了很多兴奋。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nelson Christensen其他文献

Correlated 0.01Hz-40Hz seismic and Newtonian noise and its impact on future gravitational-wave detectors
相关的 0.01Hz-40Hz 地震和牛顿噪声及其对未来引力波探测器的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamiel Janssens;G. Boileau;Nelson Christensen;N. Remortel;F. Badaracco;B. Canuel;A. Cardini;A. Contu;M. Coughlin;J. Decitre;R. D. Rosa;M. Giovanni;Domenico D’Urso;Stéphane Gaffet;C. Giunchi;Jan Harms;S. Koley;V. Mangano;L. Naticchioni;Marco Olivieri;F. Paoletti;Davide Rozza;D. Sabulsky;S. Shani;L. Trozzo
  • 通讯作者:
    L. Trozzo
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
干涉数据中紧凑二元螺旋引力辐射信号的贝叶斯推断
  • DOI:
    10.1088/0264-9381/23/15/009
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    C. Röver;R. Meyer;Nelson Christensen
  • 通讯作者:
    Nelson Christensen
Correction to: Formalism for power spectral density estimation for non-identical and correlated noise using the null channel in Einstein Telescope
  • DOI:
    10.1140/epjp/s13360-023-04072-4
  • 发表时间:
    2023-05-23
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Kamiel Janssens;Guillaume Boileau;Marie-Anne Bizouard;Nelson Christensen;Tania Regimbau;Nick van Remortel
  • 通讯作者:
    Nick van Remortel
Numerical investigation of the effects of classical phase space structure on a quantum system with decoherence
经典相空间结构对退相干量子系统影响的数值研究
Gravitational waves: search results, data analysis and parameter estimation
  • DOI:
    10.1007/s10714-014-1796-x
  • 发表时间:
    2015-01-22
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Pia Astone;Alan Weinstein;Michalis Agathos;Michał Bejger;Nelson Christensen;Thomas Dent;Philip Graff;Sergey Klimenko;Giulio Mazzolo;Atsushi Nishizawa;Florent Robinet;Patricia Schmidt;Rory Smith;John Veitch;Madeline Wade;Sofiane Aoudia;Sukanta Bose;Juan Calderon Bustillo;Priscilla Canizares;Colin Capano;James Clark;Alberto Colla;Elena Cuoco;Carlos Da Silva Costa;Tito Dal Canton;Edgar Evangelista;Evan Goetz;Anuradha Gupta;Mark Hannam;David Keitel;Benjamin Lackey;Joshua Logue;Satyanarayan Mohapatra;Francesco Piergiovanni;Stephen Privitera;Reinhard Prix;Michael Pürrer;Virginia Re;Roberto Serafinelli;Leslie Wade;Linqing Wen;Karl Wette;John Whelan;C. Palomba;G. Prodi
  • 通讯作者:
    G. Prodi

Nelson Christensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nelson Christensen', 18)}}的其他基金

RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
  • 批准号:
    1505373
  • 财政年份:
    2015
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
  • 批准号:
    0854790
  • 财政年份:
    2009
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
  • 批准号:
    0553422
  • 财政年份:
    2006
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
RUI: Data Analysis, Statistical Strategies, and Detector Characterization for LIGO
RUI:LIGO 的数据分析、统计策略和探测器表征
  • 批准号:
    0244357
  • 财政年份:
    2003
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
RUI: New Parameter Estimation, Data Analysis and Statistical Strategies for LIGO
RUI:LIGO 的新参数估计、数据分析和统计策略
  • 批准号:
    0071327
  • 财政年份:
    2000
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of cell lineage tracing methods using parameter estimation of diffusion Wright-Fisher models
使用扩散 Wright-Fisher 模型参数估计开发细胞谱系追踪方法
  • 批准号:
    23K11299
  • 财政年份:
    2023
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
  • 批准号:
    569544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
  • 批准号:
    RGPIN-2017-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Discovery Grants Program - Individual
Improvement of dust parameterization with data-assimilation-based parameter estimation
通过基于数据同化的参数估计改进灰尘参数化
  • 批准号:
    22K21337
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Parameter Estimation in Polyethylene Reactor Models
聚乙烯反应器模型中的参数估计
  • 批准号:
    573978-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    University Undergraduate Student Research Awards
A Novel Framework for Automated Simultaneous Model Identification and Parameter Estimation in Kinetic Studies
动力学研究中自动同步模型识别和参数估计的新框架
  • 批准号:
    2722453
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Studentship
LEAPS-MPS: Dynamical Parameter Estimation for Hydrodynamic Equations
LEAPS-MPS:流体动力学方程的动力学参数估计
  • 批准号:
    2213363
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
  • 批准号:
    RGPIN-2017-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous parameter estimation for electric machines
电机的自主参数估计
  • 批准号:
    2602743
  • 财政年份:
    2021
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Studentship
Statistical machine learning for efficient hidden parameter estimation and decision making
用于高效隐藏参数估计和决策的统计机器学习
  • 批准号:
    2601810
  • 财政年份:
    2021
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了