RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
基本信息
- 批准号:1505373
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The observation of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) will be a tremendous scientific accomplishment, but the resources provided through this grant will create many other positive opportunities. Carleton College is a leader in producing future scientists. This project will provide research opportunities to students with interests in physics and statistics, and help train them to become the next generation of scientists. Carleton students are eager to participate in exciting research, and their interest in gravitational wave astronomy, and science in general, is large. The computational statistical methods developed as a consequence of this project have, and will continue to have significant influence in other scientific fields: astrophysics, chaos studies, and gravitational wave detectors in space. The project will also continue to provide material that will improve teaching at the college level; subjects that will benefit from the science covered in this project include optics, general relativity, and statistics. This project also creates opportunities for scientific outreach; high school students and high school teachers will continue to be exposed to the wonder and significance of LIGO's research, and this outreach creates much excitement for science and physics. Finally, the research work of this project promotes international scientific collaboration. Albert Einstein predicted the existence of gravitational waves in 1916; a century later we should actually observe gravitational waves, and consequently the scientific and educational benefit will be tremendous.Events seen by LIGO will produce a wealth of astrophysical information, the extraction of which will require advanced techniques in data analysis, parameter estimation, and statistics. Detector characterization work will provide scientists with confidence in the quality of the data, and the performance of the detectors. Carleton College will continue with its significant efforts in identifying and characterizing noise in LIGO data; this information will be fed back to the interferometer operators in order to improve the detector performance. Carleton and colleagues are researching how to eliminate magnetic field noise from the Schumann resonances that is coherent in the LIGO-Virgo detector network. Carleton will use LIGO data to observe a cosmologically produced stochastic gravitational wave background. Carleton will contribute to the effort to detect long duration gravitational waves by correlating data from two detectors, and using pattern recognition techniques to look for signals. The Carleton team will develop Bayesian parameter estimation methods to extract physical parameters associated with core collapse supernova produced gravitational wave signals.
激光干涉仪引力波天文台观测引力波将是一项巨大的科学成就,但通过这笔赠款提供的资源将创造许多其他积极的机会。卡尔顿学院在培养未来科学家方面处于领先地位。该项目将为对物理和统计感兴趣的学生提供研究机会,并帮助他们培养成为下一代科学家。卡尔顿大学的学生渴望参与令人兴奋的研究,他们对引力波天文学和整个科学的兴趣很大。作为该项目的结果而开发的计算统计方法已经并将继续对其他科学领域产生重大影响:天体物理、混沌研究和空间引力波探测器。该项目还将继续提供将改善大学教学水平的材料;将受益于该项目所涵盖的科学的学科包括光学、广义相对论和统计学。该项目还为科学推广创造了机会;高中生和高中教师将继续接触到LIGO研究的奇迹和意义,这种推广为科学和物理带来了许多兴奋。最后,该项目的研究工作促进了国际科学合作。阿尔伯特·爱因斯坦在1916年预言了引力波的存在;一个世纪后,我们应该真正观测到引力波,因此科学和教育效益将是巨大的。LIGO看到的事件将产生丰富的天体物理信息,这些信息的提取需要数据分析、参数估计和统计方面的先进技术。探测器表征工作将使科学家对数据的质量和探测器的性能充满信心。卡尔顿学院将继续在识别和表征LIGO数据中的噪声方面做出重大努力;这些信息将反馈给干涉仪操作员,以提高探测器的性能。Carleton和他的同事正在研究如何消除LIGO-Virgo探测器网络中相干的舒曼共振产生的磁场噪声。Carleton将使用LIGO数据来观测宇宙产生的随机引力波背景。卡尔顿将通过关联来自两个探测器的数据,并使用模式识别技术来寻找信号,从而为探测长持续时间的引力波做出贡献。卡尔顿团队将开发贝叶斯参数估计方法,以提取与核心塌陷超新星产生的引力波信号相关的物理参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nelson Christensen其他文献
Correlated 0.01Hz-40Hz seismic and Newtonian noise and its impact on future gravitational-wave detectors
相关的 0.01Hz-40Hz 地震和牛顿噪声及其对未来引力波探测器的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kamiel Janssens;G. Boileau;Nelson Christensen;N. Remortel;F. Badaracco;B. Canuel;A. Cardini;A. Contu;M. Coughlin;J. Decitre;R. D. Rosa;M. Giovanni;Domenico D’Urso;Stéphane Gaffet;C. Giunchi;Jan Harms;S. Koley;V. Mangano;L. Naticchioni;Marco Olivieri;F. Paoletti;Davide Rozza;D. Sabulsky;S. Shani;L. Trozzo - 通讯作者:
L. Trozzo
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
干涉数据中紧凑二元螺旋引力辐射信号的贝叶斯推断
- DOI:
10.1088/0264-9381/23/15/009 - 发表时间:
2006 - 期刊:
- 影响因子:3.5
- 作者:
C. Röver;R. Meyer;Nelson Christensen - 通讯作者:
Nelson Christensen
Correction to: Formalism for power spectral density estimation for non-identical and correlated noise using the null channel in Einstein Telescope
- DOI:
10.1140/epjp/s13360-023-04072-4 - 发表时间:
2023-05-23 - 期刊:
- 影响因子:2.900
- 作者:
Kamiel Janssens;Guillaume Boileau;Marie-Anne Bizouard;Nelson Christensen;Tania Regimbau;Nick van Remortel - 通讯作者:
Nick van Remortel
Numerical investigation of the effects of classical phase space structure on a quantum system with decoherence
经典相空间结构对退相干量子系统影响的数值研究
- DOI:
10.1103/physreve.61.1299 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
G. Ball;K. Vant;Nelson Christensen - 通讯作者:
Nelson Christensen
Gravitational waves: search results, data analysis and parameter estimation
- DOI:
10.1007/s10714-014-1796-x - 发表时间:
2015-01-22 - 期刊:
- 影响因子:2.800
- 作者:
Pia Astone;Alan Weinstein;Michalis Agathos;Michał Bejger;Nelson Christensen;Thomas Dent;Philip Graff;Sergey Klimenko;Giulio Mazzolo;Atsushi Nishizawa;Florent Robinet;Patricia Schmidt;Rory Smith;John Veitch;Madeline Wade;Sofiane Aoudia;Sukanta Bose;Juan Calderon Bustillo;Priscilla Canizares;Colin Capano;James Clark;Alberto Colla;Elena Cuoco;Carlos Da Silva Costa;Tito Dal Canton;Edgar Evangelista;Evan Goetz;Anuradha Gupta;Mark Hannam;David Keitel;Benjamin Lackey;Joshua Logue;Satyanarayan Mohapatra;Francesco Piergiovanni;Stephen Privitera;Reinhard Prix;Michael Pürrer;Virginia Re;Roberto Serafinelli;Leslie Wade;Linqing Wen;Karl Wette;John Whelan;C. Palomba;G. Prodi - 通讯作者:
G. Prodi
Nelson Christensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nelson Christensen', 18)}}的其他基金
RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
- 批准号:
1204371 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
- 批准号:
0854790 - 财政年份:2009
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
RUI: Parameter Estimation, Data Analysis, and Detector Characterization for LIGO
RUI:LIGO 的参数估计、数据分析和探测器表征
- 批准号:
0553422 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
RUI: Data Analysis, Statistical Strategies, and Detector Characterization for LIGO
RUI:LIGO 的数据分析、统计策略和探测器表征
- 批准号:
0244357 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
RUI: New Parameter Estimation, Data Analysis and Statistical Strategies for LIGO
RUI:LIGO 的新参数估计、数据分析和统计策略
- 批准号:
0071327 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似海外基金
Development of cell lineage tracing methods using parameter estimation of diffusion Wright-Fisher models
使用扩散 Wright-Fisher 模型参数估计开发细胞谱系追踪方法
- 批准号:
23K11299 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
- 批准号:
569544-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Postgraduate Scholarships - Doctoral
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Improvement of dust parameterization with data-assimilation-based parameter estimation
通过基于数据同化的参数估计改进灰尘参数化
- 批准号:
22K21337 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Parameter Estimation in Polyethylene Reactor Models
聚乙烯反应器模型中的参数估计
- 批准号:
573978-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
A Novel Framework for Automated Simultaneous Model Identification and Parameter Estimation in Kinetic Studies
动力学研究中自动同步模型识别和参数估计的新框架
- 批准号:
2722453 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Studentship
LEAPS-MPS: Dynamical Parameter Estimation for Hydrodynamic Equations
LEAPS-MPS:流体动力学方程的动力学参数估计
- 批准号:
2213363 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Autonomous parameter estimation for electric machines
电机的自主参数估计
- 批准号:
2602743 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Studentship
Statistical machine learning for efficient hidden parameter estimation and decision making
用于高效隐藏参数估计和决策的统计机器学习
- 批准号:
2601810 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Studentship