Bioactive Scaffolds with Elastomeric Properties for the Engineering of Mechanically Active Tissues

用于机械活性组织工程的具有弹性特性的生物活性支架

基本信息

  • 批准号:
    1206310
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

This award by the Biomaterials Program in the Division of Materials Research to the University of Delaware aims to develop synthetic scaffolding materials with robust mechanical properties and defined biological activities for use in the engineering of mechanically active tissues. The investigators will accomplish this goal using chemically modified poly (epsilon-caprolactone) as the base material and multiblock alternating copolymers of peptides and poly(ethylene glycol) for bio-functionalization purposes. Novel electrospinning protocols will be developed for the fabrication of fibrous, elastomeric scaffolds that facilitate the infiltration and attachment of stem cells, and at the same time mediate their lineage-specific differentiation. The proposed hybrid systems overcome the major limitations of existing scaffolding materials and are conducive to the successful engineering of mechanically active tissues. The proposed research program integrates well with the University's effort to establish a new biomedical engineering department, providing a fertile biomaterials training ground for undergraduate and graduate students at Univ. of Delaware. It will also allow the investigators work with teachers at the Newark Center for Creative Learning to advance science education and experimental learning.Tissue engineering is a fast-growing field that aims to create artificial tissues or organs to replace damaged or diseased ones. In healthy tissue, cells reside in a three-dimensional matrix that provides proper mechanical support and developmental guidance. To create artificial replacement tissues, one must recreate the environment in which the cells originally live. The artificial scaffolds must be highly porous, display important biological signals and be able to sustain repetitive mechanical deformation without breaking down. The purpose of this research is to develop such materials that can be used to coax cells to grow, communicate with each other and to produce their own matrices with the correct composition, structure and function. This will be accomplished by combining a base material with the desired mechanical properties with an engineered, protein-like macromolecule that contains repetitive segments of synthetic polymers and natural peptides, through a novel electrospinning process to create matrices with fibers at the nanometer length scale. This work will enable the creation of sophisticated biomaterials to improve human health, thus justifying the public support. The outreach and education efforts with this award will help maintain the global competitiveness of United States. Efforts with this award will include the establishment of a biomedical engineering department at Univ. of Delaware, the training of undergraduate and graduate students, the mentoring of underrepresented minority students and the development of learning tools for a local elementary school.
该奖项由特拉华州大学材料研究部生物材料项目授予,旨在开发具有强大机械性能和明确生物活性的合成支架材料,用于机械活性组织的工程化。研究人员将使用化学改性的聚(ε-己内酯)作为基础材料和用于生物功能化目的的肽和聚(乙二醇)的多嵌段交替共聚物来实现这一目标。新型静电纺丝方案将被开发用于制造纤维弹性支架,其促进干细胞的浸润和附着,并同时介导其谱系特异性分化。所提出的混合系统克服了现有支架材料的主要局限性,有利于机械活性组织的成功工程。拟议的研究计划与大学建立一个新的生物医学工程系的努力很好地结合在一起,为特拉华州大学的本科生和研究生提供了一个肥沃的生物材料培训基地。它还将使研究人员与纽瓦克创造性学习中心的教师合作,推进科学教育和实验学习。组织工程是一个快速发展的领域,旨在创造人造组织或器官来取代受损或患病的组织或器官。在健康组织中,细胞存在于三维基质中,提供适当的机械支持和发育指导。为了创造人工替代组织,必须重建细胞最初生活的环境。人造支架必须是高度多孔的,显示重要的生物信号,并且能够承受重复的机械变形而不分解。这项研究的目的是开发这样的材料,可以用来诱导细胞生长,相互交流,并产生自己的矩阵与正确的组成,结构和功能。这将通过将具有所需机械性能的基础材料与含有合成聚合物和天然肽的重复片段的工程化蛋白质样大分子相结合来实现,通过新型静电纺丝工艺来创建具有纳米长度尺度的纤维的基质。这项工作将使创造复杂的生物材料,以改善人类健康,从而证明公众的支持。该奖项的推广和教育工作将有助于保持美国的全球竞争力。该奖项的努力将包括在特拉华州大学建立一个生物医学工程系,培训本科生和研究生,指导代表性不足的少数民族学生,并为当地小学开发学习工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinqiao Jia其他文献

Label-free, in situ monitoring of viscoelastic properties of cellular monolayers via elastohydrodynamic phenomena
通过弹性流体动力学现象对细胞单层的粘弹性特性进行无标记原位监测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianzheng Guo;X. Zou;Shalini Sundar;Xinqiao Jia;Charles Dhong
  • 通讯作者:
    Charles Dhong
Tissue Engineering Strategies for Vocal Fold Repair and Regeneration
声带修复和再生的组织工程策略
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Farran;Zhixiang Tong;R. Witt;Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Chemical modification of solid surfaces and interfaces and template-assisted fabrication of surface nanostructures
固体表面和界面的化学改性以及表面纳米结构的模板辅助制造
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering
基于透明质酸的水凝胶作为体外肿瘤工程的 3D 基质
Salivary Gland Tissue Engineering and Repair
唾液腺组织工程与修复
  • DOI:
    10.1016/b978-0-12-397157-9.00050-3
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    S. Pradhan;K. Cannon;D. Zakheim;D. Harrington;R. Duncan;Xinqiao Jia;M. Farach;R. Witt
  • 通讯作者:
    R. Witt

Xinqiao Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinqiao Jia', 18)}}的其他基金

Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
  • 批准号:
    2243648
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
  • 批准号:
    1809612
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Spatial Control of Cell Behavior via Interfacial Bioorthogonal Chemistry
通过界面生物正交化学空间控制细胞行为
  • 批准号:
    1506613
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Travel Support for "Polymeric Biomaterials" Symposium at the 249th American Chemical Society (ACS) National Meeting
第 249 届美国化学会 (ACS) 全国会议“高分子生物材料”研讨会的差旅支持
  • 批准号:
    1464454
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Travel Support for Students, Post-Docs, and Young Faculty to Attend the Symposium on "Controlling Cellular Behavior with Polymer Synthesis and Engineering" At the 235th ACS Meeting
为学生、博士后和年轻教师参加第 235 届 ACS 会议上的“用聚合物合成和工程控制细胞行为”研讨会提供差旅支持
  • 批准号:
    0801520
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Mechano-Responsive Biomaterials with Controlled Architectures and Improved Mechanical Properties via Biomimetic Strategies
职业:通过仿生策略具有受控架构和改进机械性能的机械响应生物材料
  • 批准号:
    0643226
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似海外基金

Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
  • 批准号:
    2910663
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Say Yes to NO: The Next Generation Scaffolds with Localized and Sustained Nitric Oxide (NO) Delivery for Central Nervous System Regeneration
对“否”说“是”:具有局部和持续一氧化氮 (NO) 输送的下一代支架,用于中枢神经系统再生
  • 批准号:
    EP/X027198/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
  • 批准号:
    MR/Z503897/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Novel in vitro endometrial scaffolds to investigate embryo implantation and early development
用于研究胚胎植入和早期发育的新型体外子宫内膜支架
  • 批准号:
    NC/Y500550/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Training Grant
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
  • 批准号:
    2407300
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Exploration of T- and B-cell receptors to eliminate the foreign body reaction from synthetic polymeric scaffolds
探索 T 细胞和 B 细胞受体以消除合成聚合物支架的异物反应
  • 批准号:
    24K19917
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topological Design of Novel Foldamer-Polymer Scaffolds for Applications in Drug Delivery and to Probe New Agents with Biological Activity
新型折叠聚合物支架的拓扑设计,用于药物输送和探索具有生物活性的新药物
  • 批准号:
    2902781
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Examination of scaffolds for engraftment of transplanted cells using anal sphincter injury model rats
使用肛门括约肌损伤模型大鼠检查移植细胞植入支架
  • 批准号:
    23K08122
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Drugs from Natural Product Scaffolds
从天然产物支架开发药物
  • 批准号:
    2891096
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Non-destructive assessment of cell repopulation in scaffolds for osteochondral regeneration through X-ray phase-contrast microtomography
通过 X 射线相差显微断层扫描对骨软骨再生支架中的细胞增殖进行无损评估
  • 批准号:
    2872729
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了