CAREER: Mechano-Responsive Biomaterials with Controlled Architectures and Improved Mechanical Properties via Biomimetic Strategies

职业:通过仿生策略具有受控架构和改进机械性能的机械响应生物材料

基本信息

  • 批准号:
    0643226
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

This Career award to University of Delaware is funded by the Biomaterials program in the Division of Materials Research. With this project, the PI will develop biomaterials that closely resemble the structural organizations and multi-scale responsiveness of the natural extracellular matrices, but with controlled architectures and improved mechanical properties. Main focus of the proposed study will be: 1) design of mechano-responsive hydrogels by covalent cross-linking of polyethylene glycol with nanoparticles exhibiting sacrificial bonds and hidden length on their surfaces to mimic the modular domain structures present in functional proteins; 2) synthesis of mechano-responsive elastomers by recapitulating the molecular architecture of natural elastin whereby the hydrophobic domain of the native elastin is replaced with a synthetic polymer that is capable of elastic recoil, while the hydrophilic domain will be replaced with specific peptide sequences with potential structural directing capability; and 3) characterization of mechanical properties of these dynamic and modular biomaterials by microscopic and macroscopic methods. Although smart biomaterials have been designed to respond to external stimuli such as pH, temperature, reagents, electrical or magnetic fields, synthetic polymers with the ability to respond rapidly and reversibly to mechanical stresses over prolonged periods of time in the human body have yet to be developed. Given the fact that most tissues in the body are subjected to mechanical stimuli, and cells within the tissues have sophisticated machinery that actively responds to the mechanical force, it is critical that this form of signaling will be considered in the design of polymeric matrices in this project.The proposal aims to educate several graduate and undergraduate students in biomaterials and integrates them with PI's research interest in mechano-responsive biomaterials. Developing a new graduate level course in biomedical engineering to teach biomaterials/biomedical concepts to students and stimulate their interest in these areas is also part of this project. The educational component is closely integrated with the proposed research activities with the goals of inspiring high school students to pursue biomaterials/biomedical careers; and providing research opportunities for under-represented minority students with hands-on experiences in biomaterials research. The interdisciplinary nature of the proposed research and education activities will also equip graduate students with up-to-date information, experimental skills, and creative thinking that are all indispensable in the growing field of biomedical engineering. The ultimate goal is to establish research and education programs that will not only advance the field of biomedical engineering by generating biomaterials with unprecedented mechanical properties and responsiveness but also to inspire and educate the next generation of biomedical engineers and scientists.
这个职业奖给特拉华州大学是由材料研究部的生物材料计划资助的。 通过该项目,PI将开发与天然细胞外基质的结构组织和多尺度响应性非常相似的生物材料,但具有受控的结构和改善的机械性能。该研究的主要重点是:1)通过聚乙二醇与纳米颗粒的共价交联来设计机械响应性水凝胶,该纳米颗粒在其表面上表现出牺牲键和隐藏长度,以模拟功能蛋白质中存在的模块化结构域结构; 2)机械合成通过再现天然弹性蛋白的分子结构,从而天然弹性蛋白的疏水结构域被替换,具有弹性回缩能力的合成聚合物,而亲水结构域将被具有潜在结构导向能力的特定肽序列取代;和3)通过微观和宏观方法表征这些动态和模块化生物材料的机械性能。 尽管智能生物材料已被设计成对pH值、温度、试剂、电场或磁场等外部刺激做出反应,但能够在人体内长时间快速且可逆地对机械应力做出反应的合成聚合物尚未开发出来。考虑到身体中的大多数组织都受到机械刺激,并且组织内的细胞具有对机械力做出积极响应的复杂机制,在这个项目中,这种形式的信号将被考虑在聚合物基质的设计中,这是至关重要的。该提案旨在教育一些生物材料的研究生和本科生,并将他们与PI在机械方面的研究兴趣结合起来。响应性生物材料开发一个新的生物医学工程研究生课程,向学生教授生物材料/生物医学概念,并激发他们对这些领域的兴趣也是该项目的一部分。 教育部分与拟议的研究活动紧密结合,其目标是激励高中生从事生物材料/生物医学职业;并为代表性不足的少数民族学生提供生物材料研究方面的实践经验。 拟议的研究和教育活动的跨学科性质也将为研究生提供最新的信息,实验技能和创造性思维,这些都是生物医学工程不断发展的领域所不可或缺的。最终目标是建立研究和教育计划,不仅通过产生具有前所未有的机械性能和响应能力的生物材料来推进生物医学工程领域,而且还激励和教育下一代生物医学工程师和科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinqiao Jia其他文献

Tissue Engineering Strategies for Vocal Fold Repair and Regeneration
声带修复和再生的组织工程策略
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Farran;Zhixiang Tong;R. Witt;Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Label-free, in situ monitoring of viscoelastic properties of cellular monolayers via elastohydrodynamic phenomena
通过弹性流体动力学现象对细胞单层的粘弹性特性进行无标记原位监测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianzheng Guo;X. Zou;Shalini Sundar;Xinqiao Jia;Charles Dhong
  • 通讯作者:
    Charles Dhong
Chemical modification of solid surfaces and interfaces and template-assisted fabrication of surface nanostructures
固体表面和界面的化学改性以及表面纳米结构的模板辅助制造
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering
基于透明质酸的水凝胶作为体外肿瘤工程的 3D 基质
Salivary Gland Tissue Engineering and Repair
唾液腺组织工程与修复
  • DOI:
    10.1016/b978-0-12-397157-9.00050-3
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    S. Pradhan;K. Cannon;D. Zakheim;D. Harrington;R. Duncan;Xinqiao Jia;M. Farach;R. Witt
  • 通讯作者:
    R. Witt

Xinqiao Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinqiao Jia', 18)}}的其他基金

Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
  • 批准号:
    2243648
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
  • 批准号:
    1809612
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Spatial Control of Cell Behavior via Interfacial Bioorthogonal Chemistry
通过界面生物正交化学空间控制细胞行为
  • 批准号:
    1506613
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Travel Support for "Polymeric Biomaterials" Symposium at the 249th American Chemical Society (ACS) National Meeting
第 249 届美国化学会 (ACS) 全国会议“高分子生物材料”研讨会的差旅支持
  • 批准号:
    1464454
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Bioactive Scaffolds with Elastomeric Properties for the Engineering of Mechanically Active Tissues
用于机械活性组织工程的具有弹性特性的生物活性支架
  • 批准号:
    1206310
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Travel Support for Students, Post-Docs, and Young Faculty to Attend the Symposium on "Controlling Cellular Behavior with Polymer Synthesis and Engineering" At the 235th ACS Meeting
为学生、博士后和年轻教师参加第 235 届 ACS 会议上的“用聚合物合成和工程控制细胞行为”研讨会提供差旅支持
  • 批准号:
    0801520
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

生物力学传导通路mechano-YAP/TAZ对放射损伤引起的勃起功能障碍中组织再生和功能修复的研究
  • 批准号:
    82373525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036948/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle
职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制
  • 批准号:
    2338931
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Probing the mechano-biology of cell-cell adhesion in a novel single cell assay
在新型单细胞测定中探讨细胞间粘附的力学生物学
  • 批准号:
    EP/Y002245/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036565/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Novel mechano-signalling pathways at sites of cellular adhesion
细胞粘附位点的新型机械信号传导途径
  • 批准号:
    DP240101768
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Mechano-responsive synthetic cells to engineer the immune response
机械响应合成细胞可设计免疫反应
  • 批准号:
    EP/X016587/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
  • 批准号:
    2314560
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
  • 批准号:
    23K17205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了