Linking membrane mechanics to membrane protein structure: Spatial organization and cooperative signaling of membrane proteins
将膜力学与膜蛋白结构联系起来:膜蛋白的空间组织和协同信号传导
基本信息
- 批准号:1206332
- 负责人:
- 金额:$ 36.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe Division of Materials Research and the Division of Molecular and Cellular Biosciences contribute funds to this award. This award supports theoretical research at the intersection of condensed matter physics, membrane biology, and structural biology. The PI will explore the physical principles underlying the spatial organization and biological function of cell membranes. Cell membranes exhibit a complex organization of lipids and membrane proteins, and play an integral role in many cellular processes. The functional properties of membrane proteins are not purely determined by protein structure but, rather, membrane proteins act in concert with the surrounding lipid bilayer. The overall objective of this project is to relate recent insights into the molecular structure of membrane components, which have resulted from a number of seminal breakthroughs in structural biology, to the coarse-grained description of cell membranes in terms of continuum elasticity theory, thereby providing a bridge between the structure of membrane proteins and the organization and biological function of cell membranes.Linking membrane mechanics to membrane protein structure requires a theoretical approach going beyond previous elastic models of membranes, which have mostly focused on cylindrical or conical membrane inclusions at large separations. Cell membranes are crowded, with the size and spacing of membrane proteins both being of the order of a few nanometers, and membrane proteins are found to exhibit a rich variety of hydrophobic shapes. The PI aims to develop a versatile elastic description of cell membranes allowing for the complex shapes of membrane proteins obtained from structural biology, and permitting the analysis of interactions among a large number of membrane inclusions in close proximity, which is the experimental scenario most relevant for the crowded membrane environment provided by living cells. The general theoretical concepts developed through this project will be employed to address specific biological questions in three model systems. First, the functional characteristics associated with the various reported oligomeric states and structures of mechanosensitive ion channels will be predicted in the form of channel gating curves with varying membrane tension. Second, the minimum energy shapes of membrane protein polyhedra - faceted bilayer vesicles of well-defined polyhedral symmetry - will be related to the properties of the constituent lipids and membrane proteins. Third, the planned research will explore the impact of membrane-mediated elastic interactions on the spatial organization and cooperative signaling exhibited by chemoreceptor lattices. These three case studies will enable the systematic exploration of the relationship between the structure of membrane components and the spatial organization and functional properties of cell membranes.This supports educational activities across a range of age groups, including two graduate students who will (1) help to mentor undergraduate research assistants, (2) participate in outreach activities to local high schools, (3) collaborate closely with researchers across different academic departments and institutions, (4) engage in minority outreach programs, and (5) participate in the development and teaching of a new course at the interface of physics and biology. This project supports high school science education in central Los Angeles through the organization of workshops for inner-city high school science teachers.NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Molecular and Cellular Biosciences contribute funds to this award. This project explores the physical principles underlying the biological function of proteins embedded in cell membranes, and supports research at the intersection of condensed matter physics, membrane biology, and structural biology. Membrane proteins are an abundant and important class of molecules that play critical roles in many human diseases, including cancer and Alzheimer's. Recent years have seen several major breakthroughs in the structural elucidation and biophysical characterization of membrane components. The biological function of membrane proteins is generally determined by a complex interplay between protein structure and the properties of the surrounding lipid bilayer, a major component of the membrane. This leads to a deformation of the membrane from its unperturbed state which can be described quantitatively using the theory of continuum elasticity, which has been studied widely in the context of materials research. This project develops the continuum elasticity theory of membranes as a bridge connecting the structure of membrane components to the organization and biological function of cell membranes in vivo.The general theoretical concepts developed in this project will be employed to address specific biological questions in three model systems. The first of these model systems concerns mechanosensitive ion channels, which are membrane proteins that can respond to mechanical stimuli and constitute and form the basis for the sense of touch, for example. The second model system concerns membrane protein polyhedra, which have been proposed as a novel tool for the structural study of membrane proteins. Finally, the third model system concerns chemoreceptors which form the basis for the sense of smell, for example. Chemoreceptors provide a widely-studied example of membrane proteins able to transmit signals across cell membranes, and which have been shown recently to exhibit an intriguing spatial organization into regular lattice structures. These three case studies represent model systems of high experimental interest, and will allow the systematic exploration of the relationship between the structure of membrane components and the spatial organization and functional properties of cell membranes.The scientific goals of this project are complemented by a range of educational activities which will (1) support graduate, undergraduate, and high-school students, (2) lead to the development of a new course at the interface of physics and biology, and (3) support high school science education in central Los Angeles through the organization of workshops for inner-city high school science teachers.
技术摘要材料研究部和分子与细胞生物科学部为该奖项提供资金。该奖项支持凝聚态物理学、膜生物学和结构生物学交叉领域的理论研究。 PI 将探索细胞膜空间组织和生物功能背后的物理原理。细胞膜表现出脂质和膜蛋白的复杂组织,并在许多细胞过程中发挥着不可或缺的作用。膜蛋白的功能特性并不纯粹由蛋白质结构决定,而是膜蛋白与周围的脂质双层协同作用。该项目的总体目标是将最近对膜成分分子结构的见解(这些见解源于结构生物学中的许多开创性突破)与连续弹性理论对细胞膜的粗粒度描述联系起来,从而在膜蛋白结构与细胞膜的组织和生物功能之间架起一座桥梁。将膜力学与膜蛋白结构联系起来需要 这种理论方法超越了以前的膜弹性模型,以前的膜弹性模型主要关注大间距下的圆柱形或圆锥形膜夹杂物。细胞膜拥挤,膜蛋白的大小和间距均为几纳米量级,并且膜蛋白表现出丰富多样的疏水形状。该 PI 旨在开发一种通用的细胞膜弹性描述,允许从结构生物学中获得复杂形状的膜蛋白,并允许分析大量紧密相邻的膜内含物之间的相互作用,这是与活细胞提供的拥挤膜环境最相关的实验场景。通过该项目开发的一般理论概念将用于解决三个模型系统中的特定生物学问题。首先,与各种报道的寡聚状态和机械敏感离子通道结构相关的功能特征将以具有不同膜张力的通道门控曲线的形式进行预测。其次,膜蛋白多面体(具有明确多面体对称性的多面双层囊泡)的最小能量形状将与组成脂质和膜蛋白的特性相关。第三,计划的研究将探讨膜介导的弹性相互作用对化学感受器晶格表现出的空间组织和协作信号的影响。这三个案例研究将能够系统地探索膜成分的结构与细胞膜的空间组织和功能特性之间的关系。这支持各个年龄段的教育活动,包括两名研究生,他们将(1)帮助指导本科生研究助理,(2)参加当地高中的推广活动,(3)与不同学术部门和机构的研究人员密切合作,(4)参与 少数族裔外展计划;(5) 参与物理和生物学交叉领域新课程的开发和教学。该项目通过为市中心高中科学教师组织讲习班来支持洛杉矶市中心的高中科学教育。非技术摘要材料研究部和分子与细胞生物科学部为该奖项提供资金。该项目探索细胞膜中蛋白质生物功能的物理原理,并支持凝聚态物理学、膜生物学和结构生物学的交叉研究。膜蛋白是一类丰富且重要的分子,在许多人类疾病(包括癌症和阿尔茨海默病)中发挥着关键作用。近年来,在膜成分的结构阐明和生物物理表征方面取得了几项重大突破。膜蛋白的生物学功能通常由蛋白质结构和周围脂质双层(膜的主要组成部分)的特性之间复杂的相互作用决定。这导致膜从其未受扰动的状态变形,可以使用连续弹性理论来定量描述,该理论在材料研究的背景下已得到广泛研究。该项目发展了膜的连续弹性理论,作为连接膜成分的结构与体内细胞膜的组织和生物功能的桥梁。该项目中开发的一般理论概念将用于解决三个模型系统中的特定生物学问题。这些模型系统中的第一个涉及机械敏感离子通道,它们是可以响应机械刺激并构成触觉基础的膜蛋白。第二个模型系统涉及膜蛋白多面体,它已被提议作为膜蛋白结构研究的新工具。最后,第三个模型系统涉及化学感受器,例如,化学感受器构成嗅觉的基础。化学感受器提供了膜蛋白的广泛研究的例子,该膜蛋白能够跨细胞膜传递信号,并且最近已被证明在规则的晶格结构中表现出有趣的空间组织。这三个案例研究代表了具有高度实验兴趣的模型系统,并将允许系统地探索膜成分的结构与细胞膜的空间组织和功能特性之间的关系。该项目的科学目标得到一系列教育活动的补充,这些活动将(1)支持研究生、本科生和高中生,(2)开发物理和生物学交叉领域的新课程,以及(3)支持 通过为市中心高中科学教师组织讲习班,在洛杉矶中部进行高中科学教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Haselwandter其他文献
Force-sensing in Piezo ion channels
- DOI:
10.1016/j.bpj.2022.11.953 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Christoph Haselwandter - 通讯作者:
Christoph Haselwandter
Christoph Haselwandter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christoph Haselwandter', 18)}}的其他基金
The Mechanics of Piezo Ion Channels
压电离子通道的力学原理
- 批准号:
2051681 - 财政年份:2021
- 资助金额:
$ 36.1万 - 项目类别:
Continuing Grant
CAREER: Fluctuations, Shape, and Collective Function of Membrane Protein Lattices
职业:膜蛋白晶格的波动、形状和集体功能
- 批准号:
1554716 - 财政年份:2016
- 资助金额:
$ 36.1万 - 项目类别:
Continuing Grant
相似国自然基金
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
PI(3,5)P2介导溶酶体与黑素小体互作调控黑素小体发生的分子细胞机制
- 批准号:92054102
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
新跨膜因子Angel Face调控质膜向自噬体膜转化的机理研究
- 批准号:92054109
- 批准年份:2020
- 资助金额:82.0 万元
- 项目类别:重大研究计划
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
- 批准号:92054105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
细胞骨架对鞭毛敏感蛋白FLS2胞吞及其免疫调控机制的研究
- 批准号:32000483
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
- 批准号:92054106
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
关于Tetraspanin富集结构域及迁移体的形成机制的研究
- 批准号:32070691
- 批准年份:2020
- 资助金额:58.0 万元
- 项目类别:面上项目
胚体类器官研究Wnt-PCP通路介导基底膜定向分泌与运输的分子机制
- 批准号:32000553
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural Mechanisms Linking Sensory Perception and Social Behavior
连接感官知觉和社会行为的神经机制
- 批准号:
10717481 - 财政年份:2023
- 资助金额:
$ 36.1万 - 项目类别:
LINKING OPTICS AND MECHANICS IN AIRWAY MODELS OF FIBROSIS
连接纤维化气道模型中的光学和力学
- 批准号:
8362693 - 财政年份:2011
- 资助金额:
$ 36.1万 - 项目类别:
LINKING OPTICS AND MECHANICS IN AIRWAY MODELS OF FIBROSIS
连接纤维化气道模型中的光学和力学
- 批准号:
8169522 - 财政年份:2010
- 资助金额:
$ 36.1万 - 项目类别:
Linking Spatial Variations in Shear Stress with Oxidation Stress
将剪切应力的空间变化与氧化应力联系起来
- 批准号:
8269811 - 财政年份:2006
- 资助金额:
$ 36.1万 - 项目类别:
Linking Spatial Variations in Shear Stress with Oxidation Stress
将剪切应力的空间变化与氧化应力联系起来
- 批准号:
8465253 - 财政年份:2006
- 资助金额:
$ 36.1万 - 项目类别:
Linking Spatial Variations in Shear Stress with Oxidation Stress
将剪切应力的空间变化与氧化应力联系起来
- 批准号:
8668127 - 财政年份:2006
- 资助金额:
$ 36.1万 - 项目类别:
Linking Spatial Variations in Shear Stress with Oxidation Stress
将剪切应力的空间变化与氧化应力联系起来
- 批准号:
8109140 - 财政年份:2006
- 资助金额:
$ 36.1万 - 项目类别:
Linking Biological, Optical, and Mechanical Properties in the Airway Mucosa
连接气道粘膜的生物、光学和机械特性
- 批准号:
8112620 - 财政年份:2003
- 资助金额:
$ 36.1万 - 项目类别:
Linking Biological, Optical, and Mechanical Properties in the Airway Mucosa
连接气道粘膜的生物、光学和机械特性
- 批准号:
7736322 - 财政年份:2003
- 资助金额:
$ 36.1万 - 项目类别:
Linking Biological, Optical, and Mechanical Properties in the Airway Mucosa
连接气道粘膜的生物、光学和机械特性
- 批准号:
8308156 - 财政年份:2003
- 资助金额:
$ 36.1万 - 项目类别:














{{item.name}}会员




