Geometry of Arithmetic Groups and Related Groups
算术群及相关群的几何
基本信息
- 批准号:1206946
- 负责人:
- 金额:$ 18.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI intends to study two basic problems about the large-scale geometry of arithmetic groups: classical arithmetic groups such as SL(n,Z), S-arithmetic groups such as SL(n,Z[1/p]), and function-field-arithmetic groups such as SL(n,F[t]) where F is a finite field. The first problem is to identify the Dehn functions and higher dimensional isoperimetric functions for arithmetic groups. The second is to determine that the cohomology of non-cocompact function-field-arithmetic groups is virtually infinitely generated in the dimension given by the geometric rank of the arithmetic group. The PI also plans to investigate basic open questions for universal lattices - such as SL(n,Z[t]) - and solvable arithmetic groups concerning finiteness properties and word metrics. An investigation of which lattices on CAT(0) complexes are finitely generated is also planned.Matrices are arrays of numbers. The study of the arithmetic governing the behavior of matrices - a study that mathematics, the physical sciences, and the social sciences have benefited from greatly - is the central focus of the proposed research for this award. The PI proposes to continue the mathematical tradition of bundling the equations that represent the algebra of matrices into a single geometric theory, thus allowing techniques from geometry to deepen our understanding of algebra.
本课题旨在研究两个关于大规模几何的基本问题:经典算算群SL(n,Z), s -算算群SL(n,Z[1/p])和函数域算算群SL(n,F[t]),其中F是一个有限域。第一个问题是确定等差群的Dehn函数和高维等周函数。第二是确定非紧函数-域算术群的上同调在由算术群的几何秩所给出的维数上是几乎无限产生的。PI还计划研究通用格的基本开放问题-例如SL(n,Z[t]) -以及关于有限性质和词度量的可解算术群。本文还计划对CAT(0)配合物上哪些晶格是有限生成的进行研究。矩阵是数字的数组。对控制矩阵行为的算术的研究——一项数学、物理科学和社会科学都从中受益匪浅的研究——是该奖项拟议研究的中心焦点。PI建议延续数学传统,将表示矩阵代数的方程捆绑到一个单一的几何理论中,从而允许几何技术加深我们对代数的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Wortman其他文献
Exponential higher dimensional isoperimetric inequalities for some arithmetic groups
- DOI:
10.1007/s10711-010-9523-6 - 发表时间:
2010-08-04 - 期刊:
- 影响因子:0.500
- 作者:
Kevin Wortman - 通讯作者:
Kevin Wortman
Kevin Wortman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Wortman', 18)}}的其他基金
Geometry and Cohomology of Arithmetic and Related Groups
算术及相关群的几何和上同调
- 批准号:
1509182 - 财政年份:2015
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Conference Proposal: Wasatch Topology Conference, August 2014
会议提案:Wasatch 拓扑会议,2014 年 8 月
- 批准号:
1405686 - 财政年份:2014
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Large-scale geometry of arithmetic groups and universal lattices
算术群和通用格的大规模几何
- 批准号:
0905891 - 财政年份:2009
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Group actions on homogeneous spaces, Euclidean buildings, and moduli spaces
齐次空间、欧几里得建筑和模空间的群作用
- 批准号:
0750032 - 财政年份:2007
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Group actions on homogeneous spaces, Euclidean buildings, and moduli spaces
齐次空间、欧几里得建筑和模空间的群作用
- 批准号:
0604885 - 财政年份:2006
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
相似海外基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Higher-dimensionalization of arithmetic geometry concerning arithmetic fundamental groups
关于算术基本群的算术几何的高维化
- 批准号:
20H01796 - 财政年份:2020
- 资助金额:
$ 18.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The geometry of character variety and classification of arithmetic Kleinian groups
字符变换的几何与算术克莱尼群的分类
- 批准号:
20K03612 - 财政年份:2020
- 资助金额:
$ 18.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model theory of absolute Galois groups with a view towards arithmetic geometry
算术几何视角下的绝对伽罗瓦群模型论
- 批准号:
2099876 - 财政年份:2018
- 资助金额:
$ 18.5万 - 项目类别:
Studentship
Thin Groups in Geometry and Arithmetic
几何和算术中的薄群
- 批准号:
1802119 - 财政年份:2018
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Fundamental groups and applications to arithmetic geometry
基本群及其在算术几何中的应用
- 批准号:
1789793 - 财政年份:2016
- 资助金额:
$ 18.5万 - 项目类别:
Studentship
Various problems in arithmetic geometry concerning arithmetic fundamental groups and their interrelationships
算术几何中有关算术基本群及其相互关系的各种问题
- 批准号:
15H03609 - 财政年份:2015
- 资助金额:
$ 18.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry and Cohomology of Arithmetic and Related Groups
算术及相关群的几何和上同调
- 批准号:
1509182 - 财政年份:2015
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant